285 research outputs found

    Energy levels and their correlations in quasicrystals

    Full text link
    Quasicrystals can be considered, from the point of view of their electronic properties, as being intermediate between metals and insulators. For example, experiments show that quasicrystalline alloys such as AlCuFe or AlPdMn have conductivities far smaller than those of the metals that these alloys are composed from. Wave functions in a quasicrystal are typically intermediate in character between the extended states of a crystal and the exponentially localized states in the insulating phase, and this is also reflected in the energy spectrum and the density of states. In the theoretical studies we consider in this review, the quasicrystals are described by a pure hopping tight binding model on simple tilings. We focus on spectral properties, which we compare with those of other complex systems, in particular, the Anderson model of a disordered metal.Comment: 15 pages including 19 figures. Review article, submitted to Phil. Ma

    Scaling laws and vortex profiles in 2D decaying turbulence

    Full text link
    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A self-similar scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, as predicted by Carnevale et al., and it is observed that viscous effects spoil this scaling regime. This scaling regime shows some trends toward that of the Kirchhoff model, for which a recent theory predicts a decay exponent ξ=1\xi=1. In terms of scaled variables, the vortices have a similar profile close to a Fermi-Dirac distribution.Comment: 4 Latex pages and 4 figures. Submitted to Phys. Rev. Let

    Persistence exponents of non-Gaussian processes in statistical mechanics

    Full text link
    Motivated by certain problems of statistical physics we consider a stationary stochastic process in which deterministic evolution is interrupted at random times by upward jumps of a fixed size. If the evolution consists of linear decay, the sample functions are of the "random sawtooth" type and the level dependent persistence exponent \theta can be calculated exactly. We then develop an expansion method valid for small curvature of the deterministic curve. The curvature parameter g plays the role of the coupling constant of an interacting particle system. The leading order curvature correction to \theta is proportional to g^{2/3}. The expansion applies in particular to exponential decay in the limit of large level, where the curvature correction considerably improves the linear approximation. The Langevin equation, with Gaussian white noise, is recovered as a singular limiting case.Comment: 20 pages, 3 figure

    Probability distribution of the maximum of a smooth temporal signal

    Full text link
    We present an approximate calculation for the distribution of the maximum of a smooth stationary temporal signal X(t). As an application, we compute the persistence exponent associated to the probability that the process remains below a non-zero level M. When X(t) is a Gaussian process, our results are expressed explicitly in terms of the two-time correlation function, f(t)=.Comment: Final version (1 major typo corrected; better introduction). Accepted in Phys. Rev. Let

    Self-gravitating Brownian particles in two dimensions: the case of N=2 particles

    Full text link
    We study the motion of N=2 overdamped Brownian particles in gravitational interaction in a space of dimension d=2. This is equivalent to the simplified motion of two biological entities interacting via chemotaxis when time delay and degradation of the chemical are ignored. This problem also bears some similarities with the stochastic motion of two point vortices in viscous hydrodynamics [Agullo & Verga, Phys. Rev. E, 63, 056304 (2001)]. We analytically obtain the density probability of finding the particles at a distance r from each other at time t. We also determine the probability that the particles have coalesced and formed a Dirac peak at time t (i.e. the probability that the reduced particle has reached r=0 at time t). Finally, we investigate the variance of the distribution and discuss the proper form of the virial theorem for this system. The reduced particle has a normal diffusion behaviour for small times with a gravity-modified diffusion coefficient =r_0^2+(4k_B/\xi\mu)(T-T_*)t, where k_BT_{*}=Gm_1m_2/2 is a critical temperature, and an anomalous diffusion for large times ~t^(1-T_*/T). As a by-product, our solution also describes the growth of the Dirac peak (condensate) that forms in the post-collapse regime of the Smoluchowski-Poisson system (or Keller-Segel model) for T<T_c=GMm/(4k_B). We find that the saturation of the mass of the condensate to the total mass is algebraic in an infinite domain and exponential in a bounded domain.Comment: Revised version (20/5/2010) accepted for publication in EPJ

    Numerical renormalization group of vortex aggregation in 2D decaying turbulence: the role of three-body interactions

    Full text link
    In this paper, we introduce a numerical renormalization group procedure which permits long-time simulations of vortex dynamics and coalescence in a 2D turbulent decaying fluid. The number of vortices decreases as N∼t−ξN\sim t^{-\xi}, with ξ≈1\xi\approx 1 instead of the value ξ=4/3\xi=4/3 predicted by a na\"{\i}ve kinetic theory. For short time, we find an effective exponent ξ≈0.7\xi\approx 0.7 consistent with previous simulations and experiments. We show that the mean square displacement of surviving vortices grows as ∼t1+ξ/2\sim t^{1+\xi/2}. Introducing effective dynamics for two-body and three-body collisions, we justify that only the latter become relevant at small vortex area coverage. A kinetic theory consistent with this mechanism leads to ξ=1\xi=1. We find that the theoretical relations between kinetic parameters are all in good agreement with experiments.Comment: 23 RevTex pages including 7 EPS figures. Submitted to Phys. Rev. E (Some typos corrected; see also cond-mat/9911032

    A telerehabilitation approach to chronic facial paralysis in the COVID-19 pandemic scenario: what role for electromyography assessment?

    Get PDF
    There is a lack of data on patient and diagnostic factors for prognostication of complete recovery in patients with peripheral facial palsy. Thus, the aim of this study was to evaluate the role of a telerehabilitave enhancement through the description of a case report with the use of short-wave diathermy and neuromuscular electrical stimulation combined to facial proprioceptive neuromuscular facilitation (PNF) rehabilitation in unrecovered facial palsy, in a COVID-19 pandemic scenario describing a paradigmatic telerehabilitation report. A 43-year-old woman underwent a facial rehabilitation plan consisting of a synergistic treatment with facial PNF rehabilitation, short-wave diathermy, and neuromuscular electrical stimulation (12 sessions lasting 45 min, three sessions/week for 4 weeks). Concerning the surface electromyography evaluation of frontal and orbicularis oris muscles, the calculated ratio between amplitude of the palsy side and normal side showed an improvement in terms of movement symmetry. At the end of the outpatient treatment, a daily telere-habilitation protocol with video and teleconsultation was provided, showing a further improvement in the functioning of a woman suffering from unresolved facial paralysis. Therefore, an adequate telerehabilitation follow-up seems to play a fundamental role in the management of patients with facial palsy

    Persistence properties of a system of coagulating and annihilating random walkers

    Full text link
    We study a d-dimensional system of diffusing particles that on contact either annihilate with probability 1/(q-1) or coagulate with probability (q-2)/(q-1). In 1-dimension, the system models the zero temperature Glauber dynamics of domain walls in the q-state Potts model. We calculate P(m,t), the probability that a randomly chosen lattice site contains a particle whose ancestors have undergone exactly (m-1) coagulations. Using perturbative renormalization group analysis for d < 2, we show that, if the number of coagulations m is much less than the typical number M(t), then P(m,t) ~ m^(z/d) t^(-theta), with theta=d Q + Q(Q-1/2) epsilon + O(epsilon^2), z=(2Q-1) epsilon + (2 Q-1) (Q-1)(1/2+A Q) epsilon^2 +O(epsilon^3), where Q=(q-1)/q, epsilon =2-d and A =-0.006. M(t) is shown to scale as t^(d/2-delta), where delta = d (1 -Q)+(Q-1)(Q-1/2) epsilon+ O(epsilon^2). In two dimensions, we show that P(m,t) ~ ln(t)^(Q(3-2Q)) ln(m)^((2Q-1)^2) t^(-2Q) for m << t^(2 Q-1). The 1-dimensional results corresponding to epsilon=1 are compared with results from Monte Carlo simulations.Comment: 12 pages, revtex, 5 figure

    Impact of rehabilitation on fatigue in post-COVID-19 patients: a systematic review and meta-analysis

    Get PDF
    The post-COVID-19 syndrome may affect patients after the COVID-19 post-acute phase. In particular, the 69% of patients reported persistent fatigue at the discharge. To date, no clear data are available regarding the most effective rehabilitative approaches for the treatment of this condition. Thus, this systematic review aimed to evaluate the rehabilitation treatment’s efficacy on fatigue in post-COVID-19 patients. We systematically searched PubMed, Scopus, and Web of Science databases to find longitudinal study designs presenting: post-COVID-19 patients as participants; a rehabilitative approach aimed to reduce post-COVID-19 syndrome as intervention; and fatigue intensity assessed through an evaluation tool that quantified the perceived exertion (i.e., fatigue severity scale, FSS; Borg Scale (BS); Borg Category Ratio 10, CR10; Checklist Individual Strength (CIS) fatigue scale; FACIT (Functional Assessment of Chronic Illness Therapy) fatigue scale). The present systematic review protocol was registered on PROSPERO (registration number CRD42021284058). Out of 704 articles, 6 studies were included. Nearly all patients showed COVID-19-related fatigue, and after the rehabilitation treatment, only 17% of subjects reported the persistency of symptoms. The overall effect size reported a −1.40 decrease in Borg Category Ratio 10 with a SE of 0.05 and a 95% CI between −1.50 and −1.30 (p &lt; 0.001). The present systematic review and meta-analysis underlines the rehabilitation role in the fatigue reduction in patients affected by post-COVID-19 syndrome

    Conformal Field Theory Approach to the 2-Impurity Kondo Problem: Comparison with Numerical Renormalization Group Results

    Full text link
    Numerical renormalization group and conformal field theory work indicate that the two impurity Kondo Hamiltonian has a non-Fermi liquid critical point separating the Kondo-screening phase from the inter-impurity singlet phase when particle-hole (P-H) symmetry is maintained. We clarify the circumstances under which this critical point occurs, pointing out that there are two types of P-H symmetry. Only one of them guarantees the occurance of the critical point. Much of the previous numerical work was done on models with the other type of P-H symmetry. We analyse this critical point using the boundary conformal field theory technique. The finite-size spectrum is presented in detail and compared with about 50 energy levels obtained using the numerical renormalization group. Various Green's functions, general renormalization group behaviour, and a hidden SO(7)SO(7) are analysed.Comment: 38 pages, RevTex. 2 new sections clarify the circumstances under which a model will exhibit the non-trivial critical point (hence potentially resolving disagreements with other Authors) and explain the hidden SO(7) symmetry of the model, relating it to an alternative approach of Sire et al. and Ga
    • …
    corecore