6 research outputs found

    Evaluating the need for energy storage to enhance autonomy of neighborhoods

    Get PDF
    Energy storage is generally considered as a means to bridge a period between when/where energy is available and when/where it is in demand. Storage plays an important role by providing flexibility to energy systems, increasing the potential to accommodate variable renewables generation and improving management of electricity networks. However, currently it remains unclear when and under which conditions energy storage can be profitably operated at a district level. The present study aims to quantify the level of integration of solar energy and storage in the Junction district of Geneva. A simulation tool is developed to investigate the techno-economical and environmental assessment under different scenarios. For a given investment over 20 years, the model calculates the levelized cost of electricity (LCOE), the autonomy level as well as the CO2 emissions. Given the assumptions of the model, four scenarios are analysed based on the combination of solar PV, storage, solar thermal and heat pump to find out an economically optimal configuration in terms of system size. A comparison with the Homer software is performed to test the robustness of the solar PV and battery model. The economic profitability of solar PV and battery system is in very good agreement with Homer and the autonomy level is validated by using a simulation tool created by SI-REN (Services Industriels des Energies Renouvelables de Lausanne). However, combining solar PV with battery system doesn’t bring additional autonomy to the model for Geneva study case. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling investments costs seem necessary for the future. A reduction gap between buying and selling price in grid for solar panel is recommended to increase solar installations. A validated simulation tool has been developed in this work and provide a reliable based that will be extended in the future to include the thermal demand and production. The availability of thermal storage at a large scale as well as the production over a district should further increase the autonomy of the district

    Energy modeling of the Solar Decathlon pavilion: testing the thermal resilience under unplanned use

    No full text
    The objective of the project is to evaluate the resilience of the Solar Decathlon pavilion when subjected to unplanned use in order to check the compliance with requirements of the competition regarding thermal comfort and air quality

    Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems

    Get PDF
    Due to climate change and the need to decrease the carbon footprint of urban areas, there is an increasing pressure to integrate renewable energy and other components in urban energy systems. Most of the models or available tools do not provide both an economic and environmental assessment of the energy systems and thus lead to the design of systems that are sub-optimal. A flexible and modular simulation tool, Eco-Sim, is thus developed in the current study to conduct a comprehensive techno-economic and environmental assessment of a distributed energy system considering different configuration scenarios. Subsequently, an intermodel comparison is conducted with the Hybrid Optimization Model for Electric Renewable (HOMER) Pro as well as with a state-of-the-art industrial tool. Eco-Sim is then extended by including the heating demand, thermal conversion (by using heat pumps and solar thermal) methods and thermal storage. A parametric analysis is conducted by considering different capacities of solar photovoltaics (PV), solar thermal panels and energy storage technologies. The levelized cost of electricity, the autonomy level and the CO 2 emissions are used as the key performance indicators. Based on the analysis of a study case conducted in a neighbourhood in Geneva, Switzerland, the study reveals that, with the present market prices for batteries and seasonal changes in solar energy potential, the combination of solar PV with battery storage doesn’t bring a significant autonomy to the system and increases the CO 2 emissions of the system. However, the integration of thermal storage and solar thermal generation is shown to considerably increase the autonomy of the neighbourhood. Finally, multiple scenarios are also run in order to evaluate the sensitivity of economic parameters on the performance indicators of the system. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling installation costs or stronger policies in favor of renewable energy seem necessary for the future

    Strategies to maximise the autonomy of neighbourhoods with the integration of renewable energies

    No full text
    A simulation tool (EcoSim) has been developed to analyse the economic and environmental aspects of the integration of several energy conversion units. For a given investment over 25 years, the tool calculates the self-consumption rate, the autonomy level, the levelized cost of energy (LCOE) and the CO2 emissions. A neighbourhood is modelled using the Rhino software. Then the dynamic simulation software, CitySim Pro, determines the hourly energy demand and solar PV generation. Finally, the techno-economic and environmental parameters are calculated using EcoSim. For this neighbourhood located in Basel, the self-consumption rate is maximised by combining solar PV and battery. With the sale of locally produced electricity to the residents of the neighbourhood, we have shown that the implementation of such a self-consumption community leads to a more economically profitable situation as compared to the current case where electricity is bought from an industrial company
    corecore