20 research outputs found

    A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines

    Get PDF
    Legislations for greenhouse gas and pollutant emissions from light-duty vehicles are pushing the spark ignition engine to be cleaner and more efficient. As one of the promising solutions, enhancing the ignition energy shows great potential in simultaneously mitigating combustion knock and enabling lean-burn operation. Featured with distributed ignition sites, pre-chamber ignition systems with large or small pre-chamber volumes, auxiliary or no auxiliary fueling, and large or small orifices have gained a surge of interest in decreasing the fuel consumption and pollutant emissions. This paper aims at presenting a comprehensive review of recent progress and development trends of pre-chamber ignition systems adopted on future low-carbon and low-emission spark ignition engines. First, mechanisms behind this technology are discussed from the perspectives of the pre-chamber scavenging and combustion, jet ejection, main chamber combustion, and emission formations. Second, the design criteria of pre-chamber geometries are presented in detail, followed by a discussion on the fuel and air management for the main chamber. Next, recent numerical and experimental studies on the pre-chamber ignition system and its applications in conjunction with other complementary technologies are summarized. Finally, critical issues for commercialization and future research directions are discussed.</p

    A review of water injection applied on the internal combustion engine

    Get PDF
    As a promising technique to reduce the in-cylinder temperature and exhaust temperature, mitigate combustion knock, improve combustion phasing and decrease NOx emissions, water injection applied on different types of engines has attracted extensive attention in recent years to further improve fuel economy and fulfill stricter emission regulations. Since mechanisms of water injection with different aims are distinct, benefits on engine performances and emissions are also varied. This paper intends to give a comprehensive review of water injection applied on the internal combustion engine. First, different implementations of water injection are introduced, followed by a detailed description of water evaporation processes. Second, mechanisms of the in-cylinder combustion process with water addition are discussed with respect to the heat release rate, knock tendency and emission formations. Next, recent works of water injection applied on different kinds of engines are reviewed with special attentions given to the comparisons of different implementations and injection parameters. Furthermore, comparisons and combinations of water injection with other advanced engine techniques are summarized. Finally, critical issues of current research on the water injection technique are discussed.</p

    A novel numerical implementation of electrochemical-thermal battery model for electrified powertrains with conserved spherical diffusion and high efficiency

    Get PDF
    The performance of batteries in electrified powertrain systems is highly influenced by mass diffusion and electrochemistry which are often ignored in the simulation of these systems due to the lack of a conserved, efficient, and integrable battery model. Therefore, this work numerically implements an electrochemical-thermal battery model with conserved numerical schemes and efficient numerical methods which include Jacobian-based and Jacobian-Free Newton Krylov (JFNK) solvers. The performance of the developed model is evaluated by simulating measurements of a LiFePO 4 battery under constant discharge rates and Urban Dynamometer Driving Schedule (UDDS), as well as by a detailed comparison with existing battery models. The comparison highlights two features of our model: (a) negligible mass imbalances in the spherical diffusion modelling, which are five orders of magnitude smaller than those from a recent battery model in the literature; (b) efficient modelling of real-world driving cycles with the computational time two orders of magnitude shorter than that of the literature model. These advanced features indicate that our model can be applied in both fundamental electrochemical-thermal studies of lithium-ion battery and detailed simulations of electrified powertrains as an accurate and efficient sub-model.</p

    Projection of regional carbon emissions and analysis of emission reduction potential under multiple scenarios

    No full text
    At the general debate of the 75th session of the United Nations General Assembly, president Xi Jinping proposed to reach ”carbon peak” by 2030 and strive to achieve the ”carbon neutrality” by 2060. Research on carbon emission projections is of positive significance to facilitate the effective application of ”double carbon” in China. Therefore, this paper proposes a regional carbon emission projection method. Firstly, based on the regional resource endowment and historical data on energy consumption, this paper forecasts the energy structure of each sector in the region through the Markov model and the energy demand of each sector in the region through the LEAP model. Then, the CO2 emission factor of each energy source is calculated. Finally, the projection of regional CO2 emissions under different policy and technology scenarios is provided by considering the influence of different factors on future regional carbon emissions, and the emission reduction potential is analyzed based on the projection results. To check the effectiveness of the presented method, this paper carries out a case study of regional CO2 emission in a city in China and analyzes the emission decrease effect of each proposed initiative according to the projected results. The results of the case study demonstrate that the presented method can effectively assess the regional CO2 emissions and the reduction potential of different emission reduction measures

    Day-ahead optimal energy dispatch schedule for integrated energy system based on AC/DC interconnected infrastructure

    No full text
    This study proposes a day-ahead optimal energy dispatch model for integrated energy system based on AC/DC interconnected infrastructure. In the infrastructure, micro-turbines turn high-frequency AC power into industrial-frequency AC power and incorporate it into the energy system's power system. Within the process, waste heat is sent into the waste heat boiler and lithium bromide chillier to interconnect with the heating and cooling systems. DC battery and photovoltaic generations connected with the energy system's power grid through the inverter are used as the flexible energy storage and power generation unit to build an autonomous integrated energy system based on AC/DC interconnection. In the optimisation model, the goal is set as system's lowest daily operation cost and lowest energy consumption. The constraints include system operation constraints and equipment constraints. Simulation results show that by performing the schedule made by the dispatch model, the operating efficiency of various types of AC/DC equipment in the energy system has been improved, energy waste scene has been reduced significantly and energy consumption in the energy system is reduced by 16% compared with other energy supply structure without AC/DC interconnected infrastructure under traditional schedule strategies

    Research on Multi-Timescale Coordinated Method for Source-Grid-Load with Uncertain Renewable Energy Considering Demand Response

    No full text
    The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction

    Multiobjective Optimized Dispatching for Integrated Energy System Based on Hierarchical Progressive Parallel NSGA-II Algorithm

    No full text
    Considering the importance of reducing system operating costs and controlling pollutant emissions by optimizing the operation of the integrated energy system, the energy supply structure of the integrated energy system and the joint multiobjective optimization dispatching structure is analyzed in this paper based on a day-ahead economic optimization dispatching model of the integrated energy system. Afterwards, the multiobjective optimization model of the integrated energy system is studied and multiobjective hierarchical progressive parallel algorithm based on improved NSGA-II is proposed according to the characteristics of the model. The algorithm improves the nondominated layer sorting algorithm, changes the convergence judgment condition while introducing the target reaching method to accelerate convergence, and introduces parallel computing technology according to the characteristics of the algorithm. The case shows that the proposed algorithm not only has advantages on the diversity in searching solutions but also can achieve better results in many aspects such as the iteration time and algorithm convergence which are required in practical engineering projects
    corecore