42 research outputs found

    Molecular Basis for the Immunostimulatory Potency of Small Interfering RNAs

    Get PDF
    Small interfering RNAs (siRNAs) represent a new class of antigene agents, which has emerged as a powerful tool for functional genomics and might serve as a potent therapeutic approach. However, several studies have showed that they could trigger several bystander effects, including immune activation and inhibition of unintended target genes. Although activation of innate immunity by siRNAs might be beneficial for therapy in some instances, uncontrolled activation can be toxic, and is therefore a major challenging problem. Interestingly, replacement of uridines in siRNA sequences with their 2′-modified counterparts abrogated siRNA bystander effects. Here we highlight these important findings that are expected to facilitate the rational design of siRNAs that avoid the induction of bystander effects

    RNA Interference

    Get PDF

    Evidence for the involvement of G(i2) in activation of extracellular signal-regulated kinases in hepatocytes

    Get PDF
    BACKGROUND: Activation of the extracellular signal-regulated kinases ERK1 and ERK2 in hepatocytes by prostaglandin (PG)F(2α) was recently found to be inhibited by pertussis toxin (PTX) suggesting a role for G(i) proteins. RESULTS: Targeting the Gi(2α) expression by a specific ribozyme inhibited the PGF(2α) -induced ERK1/2 activation in hepatocytes. On the other hand a non-cleaving form of the Gi(2α) ribozyme did not significantly decrease the ERK1/2 activation. In ribozyme-treated cells the Gi(2α) protein level was reduced, while the G(qα) level was not affected thus confirming the specificity of the ribozyme. CONCLUSION: The present data suggest an important role of G(i2) in PGF(2α) -induced ERK1/2 signaling in hepatocytes

    Etude des mecanismes moleculaires d'action des inhibiteurs des ADN topoisomerases 2 chez les archaebacteries halophiles

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy

    No full text
    Therapeutic dendritic cell (DC) cancer vaccines rely on the immune system to eradicate tumour cells. Although tumour antigen-specific T cell responses have been observed in most studies, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. The incorporation of small interfering RNAs (siRNAs) against immunosuppressive factors in the manufacturing process of DCs can turn the vaccine into potent immune stimulators. Additionally, siRNA modification of ex vivo-expanded T cells for adoptive immunotherapy enhanced their killing potency. Most of the siRNA-targeted immune inhibitory factors have been successful in that their blockade produced the strongest cytotoxic T cell responses in preclinical and clinical studies. Cancer patients treated with the siRNA-modified DC vaccines showed promising clinical benefits providing a strong rationale for further development of these immunogenic vaccine formulations. This review covers the progress in combining siRNAs with DC vaccines or T cell therapy to boost anti-tumour immunity

    RIBOZYMES AND SIRNA PROTOCOLS

    No full text
    xv, 616 hlm ; 16 x 24 c

    Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting

    No full text
    The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment

    Antibody Surface Profiling Identifies Glycoforms in Multiple Myeloma as Targets for Immunotherapy: From Antibody Derivatives to Mimetic Peptides for Killing Tumor Cells

    No full text
    Despite therapeutic advances in recent years, there are still unmet medical needs for patients with multiple myeloma (MM). Hence, new therapeutic strategies are needed. Using phage display for screening a large repertoire of single chain variable fragments (scFvs), we isolated several candidates that recognize a heavily sulfated MM-specific glycoform of the surface antigen syndecan-1 (CD138). One of the engineered scFv-Fc antibodies, named MM1, activated NK cells and induced antibody-dependent cellular cytotoxicity against MM cells. Analysis of the binding specificity by competitive binding assays with various glycan ligands identified N-sulfation of glucosamine units as essential for binding. Additionally, site-directed mutagenesis revealed that the amino acids arginine and histidine in the complementarily determining regions (CDRs) 2 and 3 of the heavy chain are important for binding. Based on this observation, a heavy-chain antibody, known as a nanobody, and a peptide mimicking the CDR loop sequences were designed. Both variants exhibited high affinity and specificity to MM cells as compared to blood lymphocytes. Specific killing of MM cells was achieved by conjugating the CDR2/3 mimic peptide to a pro-apoptotic peptide (KLAKLAK)2. In a co-culture model, the fusion peptide killed MM cells, while leaving normal peripheral blood mononuclear cells unaffected. Collectively, the development of antibodies and peptides that detect tumor-specific glycoforms of therapeutic targets holds promise for improving targeted therapies and tumor imaging

    Precision Killing of M2 Macrophages with Phage-Displayed Peptide-Photosensitizer Conjugates

    No full text
    Among the immunosuppressive cells recruited to the tumor microenvironment, macrophages are particularly abundant and involved in angiogenesis, metastasis, and resistance to current cancer therapies. A strategy that simultaneously targets tumor cells and macrophages, particularly pro-tumoral M2 macrophages, would have significant clinical impact for various types of solid malignancies. By the use of phage display technology, we have recently developed a synthetic peptide, named NW, which binds to M1 and M2 macrophages with high affinity. Additional affinity selection on M2 macrophages identified only dominant peptides whose binding motifs are similar to that of the NW peptide. To reduce the frequency of selecting such dominating peptides, the peptide library was affinity selected on M2 macrophages blocked with NW peptide. This approach resulted in the selection of peptides that bind to M2, but not M1 macrophages. To explore the therapeutic potential of the selected peptides, the M13 phage-displayed peptides were conjugated to the photosensitizer IR700, which has been used for cancer photoimmunotherapy. The phage displaying a dominant peptide (SPILWLNAPPWA) killed both M1 and M2 macrophages, while those displaying the M2-specific peptides killed M2 macrophages only upon near-infrared light exposure. A significant fraction of the M2 macrophages were also killed with the untargeted M13 phage-IR700 conjugates. Hence, M2 macrophages can also be selectively targeted by the wild type M13 phage, which displayed a significant tropism to these cells. The benefits of this photoimmunotherapy include an automatic self-targeting ability of the wild type M13 phage, and the option of genetic manipulation of the phage genome to include tumor targeting peptides, allowing the killing of both M2 macrophages and cancer cells
    corecore