21 research outputs found

    Chromosome instability and carcinogenesis: insights from murine models of human pancreatic cancer associated with BRCA2 inactivation.

    Get PDF
    Chromosomal instability is a hallmark of human cancer cells, but its role in carcinogenesis remains poorly resolved. Insights into this role have emerged from studies on the tumour suppressor BRCA2, whose inactivation in human cancers causes chromosomal instability through the loss of essential functions of the BRCA2 protein in the normal mechanisms responsible for the replication, repair and segregation of DNA during cell division. Humans who carry heterozygous germline mutations in the BRCA2 gene are highly predisposed to cancers of the breast, ovary, pancreas, prostate and other tissues. Here, we review recent studies that describe genetically engineered mouse models (GEMMs) for pancreatic cancer associated with BRCA2 mutations. These studies not only surprisingly show that BRCA2 does not follow the classical Knudson "two hit" paradigm for tumour suppression, but also highlight features of the interplay between TP53 inactivation and carcinogenesis in the context of BRCA2 deficiency. Thus, the models reveal novel aspects of cancer evolution in carriers of germline BRCA2 mutations, provide new insights into the tumour suppressive role of BRCA2, and establish valuable new preclinical settings for testing approaches to pancreatic cancer therapy; together, these features emphasize the value of GEMMs in cancer research

    Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids

    Get PDF
    Abstract: Background: Pancreatic organoid systems have recently been described for the in vitro culture of pancreatic ductal cells from mouse and human. Mouse pancreatic organoids exhibit unlimited expansion potential, while previously reported human pancreas organoid (hPO) cultures do not expand efficiently long-term in a chemically defined, serum-free medium. We sought to generate a 3D culture system for long-term expansion of human pancreas ductal cells as hPOs to serve as the basis for studies of human pancreas ductal epithelium, exocrine pancreatic diseases and the development of a genomically stable replacement cell therapy for diabetes mellitus. Results: Our chemically defined, serum-free, human pancreas organoid culture medium supports the generation and expansion of hPOs with high efficiency from both fresh and cryopreserved primary tissue. hPOs can be expanded from a single cell, enabling their genetic manipulation and generation of clonal cultures. hPOs expanded for months in vitro maintain their ductal morphology, biomarker expression and chromosomal integrity. Xenografts of hPOs survive long-term in vivo when transplanted into the pancreas of immunodeficient mice. Notably, mouse orthotopic transplants show no signs of tumorigenicity. Crucially, our medium also supports the establishment and expansion of hPOs in a chemically defined, modifiable and scalable, biomimetic hydrogel. Conclusions: hPOs can be expanded long-term, from both fresh and cryopreserved human pancreas tissue in a chemically defined, serum-free medium with no detectable tumorigenicity. hPOs can be clonally expanded, genetically manipulated and are amenable to culture in a chemically defined hydrogel. hPOs therefore represent an abundant source of pancreas ductal cells that retain the characteristics of the tissue-of-origin, which opens up avenues for modelling diseases of the ductal epithelium and increasing understanding of human pancreas exocrine biology as well as for potentially producing insulin-secreting cells for the treatment of diabetes

    HMGA1 Is a Molecular Determinant of Chemoresistance to Gemcitabine in Pancreatic Adenocarcinoma

    No full text

    HMGA1 Is a Determinant of Cellular Invasiveness and In vivo

    No full text
    corecore