2,514 research outputs found

    CP violation and mass hierarchy at medium baselines in the large theta(13) era

    Full text link
    The large value of theta(13) recently measured by rector and accelerator experiments opens unprecedented opportunities for precision oscillation physics. In this paper, we reconsider the physics reach of medium baseline superbeams. For theta(13) ~ 9 degree we show that facilities at medium baselines -- i.e. L ~ O(1000 km) -- remain optimal for the study of CP violation in the leptonic sector, although their ultimate precision strongly depends on experimental systematics. This is demonstrated in particular for facilities of practical interest in Europe: a CERN to Gran Sasso and CERN to Phyasalmi nu_mu beam based on the present SPS and on new high power 50 GeV proton driver. Due to the large value of theta(13), spectral information can be employed at medium baselines to resolve the sign ambiguity and determine the neutrino mass hierarchy. However, longer baselines, where matter effects dominate the nu_mu->nu_e transition, can achieve much stronger sensitivity to sign(Delta m^2) even at moderate exposures.Comment: 14 pages, 14 figures, version to appear in EPJ

    Time variations in the deep underground muon flux measured by MACRO

    Full text link
    More than 30 million of high-energy muons collected with the MACRO detector at the underground Gran Sasso Laboratory have been used to search for flux variations of different natures. Two kinds of studies were carried out: search for periodic variations and for the occurrence of clusters of events. Different analysis methods, including Lomb-Scargle spectral analysis and Scan Test statistics have been applied to the data.Comment: 6 pages, 4 EPS figures. Talk given at the 29th ICRC, Pune, India, 3-10 August 200

    Search for exotic contributions to atmospheric neutrino oscillations

    Full text link
    The energy spectrum of neutrino-induced upward-going muons in MACRO was analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant effect. The data disfavor these possibilities even at a sub-dominant level; stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter Δv<6×1024|\Delta v| < 6 \times 10^{-24} at sin2θv\sin 2{\theta}_v = 0 and Δv<2.5÷5×1026|\Delta v| < 2.5 \div 5 \times 10^{-26} at sin2θv\sin 2{\theta}_v = ±\pm1. The limits can be re-interpreted as bounds on the Equivalence Principle violation parameters.Comment: Presented at the 29th I.C.R.C., Pune, India (2005

    Time variations in the deep underground muon flux

    Full text link
    More than 35 million high-energy muons collected with the MACRO detector at the underground Gran Sasso Laboratory have been used to search for flux variations of different nature. Two kinds of studies were carried out: a search for the occurrence of clusters of events and a search for periodic variations. Different analysis methods, including the Scan Statistics test and the Lomb-Scargle spectral analysis have been applied to the data.Comment: 7 pages, 5 figures, accepted by EP

    Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data

    Full text link
    Neutrino-induced upward-going muons in MACRO have been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of nu_mu -> nu_tau transitions. The data disfavor these exotic possibilities even at a sub-dominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Delta v| < 6 * 10^(-24) at sin2theta_v = 0 and |Delta v| < 2.5--5 * 10^(-26) at sin2theta_v = +/-1. These limits can also be re-interpreted as upper bounds on the parameters describing violation of the Equivalence Principle.Comment: 8 pages, 2 figures, submitted to Physics Letters

    Search for spontaneous muon emission from lead nuclei

    Full text link
    We describe a possible search for muonic radioactivity from lead nuclei using the base elements ("bricks" composed by lead and nuclear emulsion sheets) of the long-baseline OPERA neutrino experiment. We present the results of a Monte Carlo simulation concerning the expected event topologies and estimates of the background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure

    Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    Full text link
    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance can benefit of the large statistics of CC muon events from the primary neutrino beam. Results of our study are reported in detail in this proposal. We aim to design, construct and install two Spectrometers at "NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed LAr detectors. Profiting of the large mass of the two Spectrometers their stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
    corecore