557 research outputs found
Carrier de-smearing of photoluminescence images on silicon wafers using the continuity equation
Photoluminescence images of silicon wafers with non-uniform lifetime distribution are often smeared by lateral carrier diffusion. We propose a simple method to de-smear the photoluminescence images by applying the two-dimensional continuity equation. We demonstrate the method on simulated silicon wafers and measured photoluminescence-based lifetime image of multicrystalline silicon wafer. The de-smearing is very effective in recovering the actual lifetime for wafers with gradual changes in lifetime but is less effective around localised recombination centres with high contrast such as grain boundaries and dislocations. The method is sensitive to measurement noise; therefore, the implementation of suitable noise filtering is often critical.This work was supported by the Australian Research
Council and the Australian Renewable Energy Agency
Numerical Simulation of magnetized jet creation using a hollow ring of laser beams
Three dimensional FLASH magneto-hydrodynamics(MHD) modeling is carried out to
interpret the OMEGA laser experiments of strongly magnetized, highly collimated
jets driven by a ring of 20 OMEGA beams. The predicted optical Thomson
scattering spectra and proton images are in good agreement with a subset of the
experimental data. Magnetic fields generated via the Biermann battery term are
amplified at the boundary between the core and the surrounding of the jet. The
simulation predicts multiple axially aligned magnetic flux ropes with
alternating poloidal component. Future applications of the hollow ring
configuration in laboratory astrophysics are discussed
A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite
We measured the reduced partition function ratios for iron isotopes in
goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite
(H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS,
also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear
Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements
were made on synthetic minerals enriched in 57Fe. A new method (i.e., the
general moment approach) is presented to calculate {\beta}-factors from the
moments of the NRIXS spectrum S(E). The first term in the moment expansion
controls iron isotopic fractionation at high temperature and corresponds to the
mean force constant of the iron bonds, a quantity that is readily measured and
often reported in NRIXS studies.Comment: 38 pages, 2 tables, 8 figures. In press at Geochimica et Cosmochimica
Acta. Appendix C contains new derivations relating the moments of the iron
PDOS to the moments of the excitation probability function measured in
Nuclear Resonant Inelastic X-ray Scatterin
Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement
fusion implosions are assessed through measurements of fusion burn profiles. Over this series of
experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number,
NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma
conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match
measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured
the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially
resolved measurements of the fusion burn are used to examine kinetic ion transport effects in
greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional
integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison
of measured and simulated burn profiles shows that models including ion transport effects
are able to better match the experimental results. In implosions characterized by large Knudsen
numbers (NK3), the fusion burn profiles predicted by hydrodynamics simulations that exclude
ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally
observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that
includes a model of ion diffusion is able to qualitatively match the measured profile shapes.
Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the
observed trends, though further refinement of the models is needed for a more complete and
quantitative understanding of ion kinetic effects
Using Inertial Fusion Implosions to Measure the T + 3He Fusion Cross Section at Nucleosynthesis-Relevant Energies
Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of [superscript 6]Li in low-metallicity stars. Using high-energy-density plasmas we measure the T([superscript 3]He,γ)[superscript 6]Li reaction rate, a candidate for anomalously high [superscript 6]Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.United States. Department of Energy (DE-NA0001857)United States. Department of Energy (DE-FC52-08NA28752)United States. Department of Energy (DEFG02-88ER40387)United States. Department of Energy (DE-NA0001837)United States. Department of Energy (DE-AC52- 06NA25396)Lawrence Livermore National Laboratory (B597367)Lawrence Livermore National Laboratory (415935- G)University of Rochester. Fusion Science Center (524431)National Laser User’s Facility (DE-NA0002035)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)Los Alamos National Laboratory. Laboratory Directed Research and Development Program (20150717PRD2
Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions
Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D[superscript 3]He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1 mg/cm[superscript 3] to a factor of 100 at 0.14 mg/cm[superscript 3]. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.United States. Dept. of Energy (Grant DE-NA0001857)United States. Dept. of Energy (Grant DE-FC52-08NA28752)University of Rochester. Fusion Science Center (5-24431)National Laser User’s Facility (DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (415935-G)Lawrence Livermore National Laboratory (B597367
Experimental Evidence of a Variant Neutron Spectrum from the T(t,2n)α Reaction at Center-of-Mass Energies in the Range of 16–50 keV
Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E[subscript c.m.]) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E[subscript c.m.], with the ⁵He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E[subscript c.m.] range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ³He(³He,2p)α reaction
Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D[superscript 3]He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and [superscript 3]He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.United States. National Nuclear Security Administration (Grant DE-NA0001857)University of Rochester. Fusion Science Center (Grant 415023-G)National Laser User’s Facility (Grant DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)Lawrence Livermore National Laboratory (Grant B600100
- …
