97 research outputs found

    Thermal nature of charmonium transverse momentum spectra from Au-Au collisions at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    Full text link
    We analyze the transverse momentum distribution of J/ψJ/\psi mesons produced in Au + Au collisions at the top RHIC energy within a blast-wave model that accounts for a possible inhomogeneity of the charmonium distribution and/or flow fluctuations. The results imply that the transverse momentum spectra ofJ/ψJ/\psi, ϕ\phi and Ω\Omega hadrons measured at the RHIC can be described well if kinetic freeze-out takes place just after chemical freeze-out for these particles.Comment: 17 pages, 5 figures, minor corrections, to appear in Phys. Rev.

    On freeze-out problem in hydro-kinetic approach to A+A collisions

    Get PDF
    A new method for evaluating spectra and correlations in the hydrodynamic approach is proposed. It is based on an analysis of Boltzmann equations (BE) in terms of probabilities for constituent particles to escape from the interacting system. The conditions of applicability of Cooper-Frye freeze-out prescription are considered within the method. The results are illustrated with a non-relativistic exact solution of BE for expanding spherical fireball as well as with approximate solutions for ellipsoidally expanding ones.Comment: 4 pages including 2 figures, RevTex, stylistic and clarifying corrections are made, submitted to Phys. Rev. Let

    Initial condition for hydrodynamics, partonic free streaming, and the uniform description of soft observables at RHIC

    Full text link
    We investigate the role of the initial condition used for the hydrodynamic evolution of the system formed in ultra-relativistic heavy-ion collisions and find that an appropriate choice motivated by the models of early-stage dynamics, specifically a simple two-dimensional Gaussian profile, leads to a uniform description of soft observables measured in the Relativistic Heavy-Ion Collider (RHIC). In particular, the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described. We use the perfect-fluid hydrodynamics with a realistic equation of state based on lattice calculations and the hadronic gas at high and low temperatures, respectively. We also show that the inclusion of the partonic free-streaming in the early stage allows to delay the start of the hydrodynamical description to comfortable times of the order of 1 fm/c. Free streaming broadens the initial energy-density profile, but generates the initial transverse and elliptic flow. The data may be described equally well when the hydrodynamics is started early, or with a delay due to partonic free-streaming.Comment: 4 pages, 4 figure

    HBT search for new states of matter in A+A collisions

    Full text link
    A method allowing studies of the hadronic matter at the early evolution stage in A+A collisions is developed. It is based on an interferometry analysis of approximately conserved values such as the averaged phase-space density (APSD) and the specific entropy of thermal pions. The plateau found in the APSD behavior vs collision energy at SPS is associated, apparently, with the deconfinement phase transition at low SPS energies; a saturation of this quantity at the RHIC energies indicates the limiting Hagedorn temperature for hadronic matter. It is shown that if the cubic power of effective temperature of pion transverse spectra grows with energy similarly to the rapidity density (that is roughly consistent with experimental data), then the interferometry volume is inverse proportional to the pion APSD that is about a constant because of limiting Hagedorn temperature. This sheds light on the HBT puzzle.Comment: 23 pages, 8 figures, minor correction

    Free-streaming approximation in early dynamics of relativistic heavy-ion collisions

    Full text link
    We investigate an approximation to early dynamics in relativistic heavy-ion collisions, where after formation the partons are free streaming and around the proper time of 1 fm/c undergo a sudden equilibration described in terms of the Landau matching condition. We discuss physical and formal aspects of this approach. In particular, we show that initial azimuthally asymmetric transverse flow develops for non-central collisions as a consequence of the sudden equilibration. Moreover, the energy-momentum tensor from the free-streaming stage matches very smoothly to the form used in the transverse hydrodynamics, whereas matching to isotropic hydrodynamics requires a more pronounced change in the energy-momentum tensor. After the hydrodynamic phase statistical hadronization is carried out with the help of THERMINATOR. The physical results for the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described within our approach. The agreement is equally good for a purely hydrodynamic evolution started at an early proper time of 0.25 fm/c, or for the free streaming started at that time, followed by the sudden equilibration at tau ~1 fm/c and then by perfect hydrodynamics. Thus, the inclusion of free streaming allows us to delay the start of hydrodynamics to more realistic times of the order of 1 fm/c.Comment: 10 pages, 12 figure

    Early anisotropic hydrodynamics and the RHIC early-thermalization and HBT puzzles

    Full text link
    We address the problem if the early thermalization and HBT puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.Comment: replaced with the version published in Phys.Rev.C 8

    Particle Freeze-out and Discontinuities in Relativistic Hydrodynamics

    Get PDF
    Freeze-out of particles in relativistic hydrodynamics is considered across a 3-dimensional space-time hypersurface. The conservation laws for time-like parts of the freeze-out hypersurface require different values of temperature, baryonic chemical potential and flow velocity in the fluid and in the final particle spectra. We analyze this freeze-out discontinuity and its connection to the shock-wave phenomena in relativistic hydrodynamics.Comment: 6 figure

    Small size boundary effects on two-pion interferometry

    Full text link
    The Bose-Einstein correlations of two identically charged pions are derived when these particles, the most abundantly produced in relativistic heavy ion collisions, are confined in finite volumes. Boundary effects on single pion spectrum are also studied. Numerical results emphasize that conventional formulation usually adopted to describe two-pion interferometry should not be used when the source size is small, since this is the most sensitive case to boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar

    Feeding of the elliptic flow by hard partons

    Full text link
    We propose that in nuclear collisions at the LHC the elliptic flow may get a contribution from leading hard and semihard partons which deposit energy and momentum into the hydrodynamic bulk medium. The crucial effect is that these partons induce wakes which interact and merge if they come together. The contribution to the integrated elliptic flow is estimated with the help of a toy model to about 25% of the observed value and shows strong event-by-event fluctuations.Comment: 9 pages, 3 figure
    • …
    corecore