16 research outputs found

    Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment

    Get PDF
    Acknowledgments This study is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (FM and HZ), the Medical Research Council grant (grant reference MR/L013142/1, FM), SMA-Europe grant (FM and HZ) and Great Ormond Street Hospital Children’s Charity grants (FM and HZ). JEM is supported by Great Ormond Street Hospital Children’s Charity. PS is supported by Bill Marshall Fellowship and The CP Charitable Trust at Great Ormond Street Hospital and UCL. SHP is supported by SMA Trust and Euan MacDonald Centre for Motor Neurone Disease Research.Peer reviewedPublisher PD

    Changes in hepatitis A virus (HAV) seroprevalence in medical students in Bangkok, Thailand, from 1981 to 2016

    No full text
    Abstract Objective This study aimed to determine the seroprevalence of anti-HAV IgG in Thai medical students in 2016 compared with the previous data and to demonstrate the cross-effective strategy to screen HAV seropositivity. Results Sera from 176 first-year medical students (age 19.07 ± 0.59 years; 50% female) at a university hospital in Thailand were tested for anti-HAV IgG. Data from HAV vaccination records and questionnaires were also collected. HAV seropositivity was unexpectedly high (62.5%, n = 110). 37.5% (n = 66) had an HAV vaccination record. Of these, 60.6% received the full HAV vaccination series, 4.5% received one HAV vaccination, 34.8% did not receive HAV vaccination, and 3.0% had natural HAV immunity. The long-term efficacy of HAV vaccination was at least 97.5% over a mean of 15.55 ± 2.44 years. There was a significant difference in immunity between students with (66.7%) and without (50.9%) vaccination records (P = 0.028). Most of the student’s parents had a bachelor’s degree or higher (87.9%; n = 272) and above average income (mean 17,000.76 ± 194.22 USD/person/year). Parental education and socioeconomic status influenced vaccination accessibility in these medical students. Screening of vaccination records instead of routine anti-HAV IgG testing is a cost-effective and reliable strategy to determine HAV immunity in medical students in Thailand

    Impact of Obesity and Being Overweight on the Immunogenicity to Live Attenuated Hepatitis A Vaccine in Children and Young Adults

    No full text
    Prior results investigating a correlation between obesity and hepatitis A virus (HAV) vaccine response have been inconclusive, with limited data involving live attenuated HAV vaccines. The aim of this study is to evaluate the effect of overweight and obesity on the response to live attenuated HAV vaccine in children and young adults. This prospective cohort study was conducted in Thailand with subjects ranging in age from seven to twenty-five years. The subjects were administered 0.5 mL of MEVAC™-A and tested for anti-HAV antibodies before and at 8–9 weeks after vaccination. Baseline seronegative subjects (anti-HAV antibodies < 20 mIU/mL) were divided into non-obese (underweight/normal weight) and obese (overweight/obesity/severe obesity) groups. A total of 212 (117 non-obese and 95 obese) subjects completed the study (mean age (SD) = 13.95 (3.90) years). The seroprotection rates were 100%. Postvaccination geometric mean titers (95% CI) were 429.51 (401.97, 458.94) and 467.45 (424.47, 514.79) mIU/mL in the non-obese and obese groups, respectively. Females (p = 0.013) and subjects with truncal obesity (p = 0.002) had significantly higher titers than other participants. Live attenuated HAV vaccine is safe and has comparably high immunogenicity in both underweight/normal weight and overweight/obese persons

    Safety and Humoral and Cellular Immunogenicity of the BNT162b2 SARS-CoV-2 Vaccine in Liver-Transplanted Adolescents Compared to Healthy Adolescents

    No full text
    Since BNT162b2 was approved to prevent COVID-19 in children, we aim to compare the safety and immunogenicity of the BNT162b2 vaccine in liver-transplanted (LT) and healthy adolescents. LT and healthy adolescents received two doses of 30 µg of BNT162b2. All were evaluated for total COVID-19 antibodies directed against the receptor-binding domain (RBD) and interferon-γ using the ELISpot at all time points; anti-nucleocapsid immunoglobulin was evaluated at week 8 and the surrogate virus-neutralizing antibody (sVN) to Omicron at day 0 and week 8. Adverse effects were recorded during days 0–7. In total, 16 LT and 27 healthy adolescents were enrolled (aged 14.78 ± 1.70 years). After completion, all LT and healthy adolescents were positive for anti-RBD immunoglobulin, with geometric mean titers of 1511.37 (95% CI 720.22–3171.59) and 6311.90 (95% CI 4955.46–8039.64)) U/mL (p < 0.001). All tested negative for anti-nucleocapsid immunoglobulin, indicating no COVID-19 infection after vaccination. However, the sVNs to Omicron were positive in only nine (33.33%) healthy adolescents and none of the LT adolescents. Interferon-γ-secreting cells were lower in LT adolescents than healthy adolescents. The LT adolescents had a lower immunogenic response to BNT162b2 than the healthy adolescents. Administrating two doses of BNT162b2 was safe, but was less effective against the Omicron variant

    Safety and Immunogenicity of Standard and Double Doses of Hepatitis B Vaccine in Children after Liver Transplantation: An Open-Label, Randomised Controlled Trial

    No full text
    A high prevalence of hepatitis B (HepB) antibody loss after liver transplantation (LT) and de novo HepB infection (DNH) was documented, hence revaccination to prevent DNH is crucial. This study aimed to compare the safety and immunogenicity of two HepB vaccine regimens in liver-transplanted children. Liver-transplanted children who were previously immunised but showed HepB surface antibodies (anti-HBs) &le; 100 mIU/mL were randomised to receive a standard three-dose (SD) and double three-dose (DD) vaccine intramuscularly in months 0&ndash;1&ndash;6. Anti-HBs and T-cell-specific response to the HepB antigen were assessed. A total of 61 children (54.1% male, aged 1.32 &plusmn; 1.02 years) completed the study without any serious adverse reaction. The seroprotective rate was 69.6% vs. 60% (p = 0.368) and 91.3% vs. 85% (p = 0.431) in SD and DD after the first and third 3-dose vaccinations, respectively. The geometric mean titre (95% confidence interval) of anti-HBs in SD and DD were 443.33 (200.75&ndash;979.07) vs. 446.17 (155.58&ndash;1279.50) mIU/mL, respectively, at completion. Numbers of interferon-&gamma;-secreting cells were higher in hyporesponders/responders than in nonresponders (p = 0.003). The significant factors for the immunologic response to HepB vaccination were anti-HB levels prevaccination, tacrolimus trough levels, and time from LT to revaccination. SD and DD had comparative immunogenicity and were safe for liver-transplanted children who were previously immunised

    Systemic delivery of PMO25 increased <i>SMN2</i> exon 7 inclusion and SMN protein expression in intestine.

    No full text
    <p>(A) Representative image of reverse transcriptional polymerase chain reaction (PCR) showed the partial increase of full-length <i>SMN2</i> in SMA mice after PMO25 treatment. (B) Quantitative real-time PCR of full-length <i>SMN2</i> to Δ7 <i>SMN2</i> transcript ratio. (C) Western blotting assay of human SMN protein in intestine tissues from SMA and PMO25 treated SMA mice. β–tubulin was used as loading control. (D) Semi-quantification of SMN protein relative to tubulin control. Data were normalized to the ratio of SMN/tubulin in untreated SMA mice. (N = 3, *P< 0.05)</p

    Histology of small intestine.

    No full text
    <p>H&E staining of (A) Control (B) SMA (C) SMA+PMO25 small intestine. Shortened and blunted villi (* asterisk) and intramural edema (^ arrow head) were present in the lamina propria layer in SMA mice, along with the distinct intestinal crypt architectural distortion (arrow). Quantification of the villus length (D) and crypt size (E) in mice. **P < 0.001, *P < 0.05. Scale bar = 100 μm.</p
    corecore