35 research outputs found
Accelerating Climate Simulations Through Hybrid Computing
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead
Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation
This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics
Development of a parallel multiscale 3D model for thrombus growth under flow
Thrombus growth is a complex and multiscale process involving interactions spanning length scales from individual micron-sized platelets to macroscopic clots at the millimeter scale. Here, we describe a 3D multiscale framework to simulate thrombus growth under flow comprising four individually parallelized and coupled modules: a data-driven Neural Network (NN) that accounts for platelet calcium signaling, a Lattice Kinetic Monte Carlo (LKMC) simulation for tracking platelet positions, a Finite Volume Method (FVM) simulator for solving convection-diffusion-reaction equations describing agonist release and transport, and a Lattice Boltzmann (LB) flow solver for computing the blood flow field over the growing thrombus. Parallelization was achieved by developing in-house parallel routines for NN and LKMC, while the open-source libraries OpenFOAM and Palabos were used for FVM and LB, respectively. Importantly, the parallel LKMC solver utilizes particle-based parallel decomposition allowing efficient use of cores over highly heterogeneous regions of the domain. The parallelized model was validated against a reference serial version for accuracy, demonstrating comparable results for both microfluidic and stenotic arterial clotting conditions. Moreover, the parallelized framework was shown to scale essentially linearly on up to 64 cores. Overall, the parallelized multiscale framework described here is demonstrated to be a promising approach for studying single-platelet resolved thrombosis at length scales that are sufficiently large to directly simulate coronary blood vessels
MODIS Land Data Products: Generation, Quality Assurance and Validation
The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described
System and Method for Providing a Climate Data Persistence Service
A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases
A Disk-Based System for Producing and Distributing Science Products from MODIS
Since beginning operations in 1999, the MODIS Adaptive Processing System (MODAPS) has evolved to take advantage of trends in information technology, such as the falling cost of computing cycles and disk storage and the availability of high quality open-source software (Linux, Apache and Perl), to achieve substantial gains in processing and distribution capacity and throughput while driving down the cost of system operations