11 research outputs found

    Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    Get PDF
    Stratospheric bromine loading due to very shortlived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very shortlived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach

    The MIPAS HOCl climatology

    Get PDF
    Monthly zonal mean HOCl measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) are presented for the period from June 2002 to March 2004. Highest molar mixing ratios are found at pressure levels between 6 and 2 hPa, whereby largest mixing ratios occasionally exceed 200 ppt. The mixing ratio maximum is generally higher at lower altitudes in the summer hemisphere than in the winter hemisphere except for chlorine activation conditions in polar vortices, where enhanced HOCl abundances are also found in the lower stratosphere below about 10 hPa. During nighttime the maximum is found at higher altitudes than during daytime. Particularly low values (below 80 ppt) during daytime are found in subpolar regions in the winter hemisphere where HOCl photolysis is still strong but where HOCl precursors are less abundant than at other latitudes. The Antarctic polar winter HOCl distribution in 2002, the year of the split of the southern polar vortex, resembles northern polar winters rather than other southern polar winters. Increased HOCl amounts in response to the so-called Halloween solar proton event in autumn 2003 affect the representativeness of data recorded during this particular episode. Calculations with the EMAC model reproduce the measured HOCl distribution reasonably well. MIPAS measurements confirm that the reaction rate constants for HO2 + ClO →HOCl +O2 from the most recent JPL recommendation allow much more realistic modelling of HOCl than reaction rate constants from earlier recommendations. Modeled HOCl mixing ratios, however, are still too low except in the polar winter stratosphere where the model overestimates the HOCl abundance

    Multistation intercomparison of column-averaged methane from NDACC and TCCON: impact of dynamical variability

    Get PDF
    Dry-air column-averaged mole fractions of methane (XCH4) retrieved from ground-based solar Fourier transform infrared (FTIR) measurements provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink-inversions. In this context, Sussmann et al. (2013) have shown that midinfrared (MIR) soundings from the Network for the Detection of Atmospheric Composition Change (NDACC) can be combined with near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON) without the need to apply an overall intercalibration factor. However, in spite of efforts to reduce a priori impact, some residual seasonal biases were identified, and the reasons behind remained unclear. In extension to this previous work, which was based on multiannual quasi-coincident MIR and NIR measurements from the stations Garmisch (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong (34.41° S, 150.88° E, 30 m a.s.l.), we now investigate upgraded retrievals with longer temporal coverage and include three additional stations (Ny-Ă…lesund, 78.92° N, 11.93° E, 20 m a.s.l.; Karlsruhe, 49.08° N, 8.43° E, 110 m a.s.l.; Izaña, 28.31° N, 16.45° W, 2.370 m a.s.l.). Our intercomparison results (except for Ny-Ă…lesund) confirm that there is no overall bias between MIR and NIR XCH4 retrievals, and all MIR and NIR time series reveal a quasi-periodic seasonal bias for all stations, except for Izaña. We find that dynamical variability causes MIR–NIR differences of up to ~ 30 ppb (parts per billion) for Ny-Ă…lesund, ~ 20 ppb for Wollongong, ~ 18 ppb for Garmisch, and ~ 12 ppb for Karlsruhe. The mechanisms behind this variability are elaborated via two case studies, one dealing with stratospheric subsidence induced by the polar vortex at Ny-Ă…lesund and the other with a deep stratospheric intrusion event at Garmisch. Smoothing effects caused by the dynamical variability during these events are different for MIR and NIR retrievals depending on the altitude of the perturbation area. MIR retrievals appear to be more realistic in the case of stratospheric subsidence, while NIR retrievals are more accurate in the case of stratosphere–troposphere exchange (STE) in the upper troposphere/lower stratosphere (UTLS) region. About 35% of the FTIR measurement days at Garmisch are impacted by STE, and about 23% of the measurement days at Ny-Ă…lesund are influenced by polar vortex subsidence. The exclusion of data affected by these dynamical situations resulted in improved agreement of MIR and NIR seasonal cycles for Ny-Ă…lesund and Garmisch. We found that dynamical variability is a key factor in constraining the accuracy of MIR and NIR seasonal cycles. To mitigate this impact it is necessary to use more realistic a priori profiles that take these dynamical events into account (e.g., via improved models), and/or to improve the FTIR retrievals to achieve a more uniform sensitivity at all altitudes (possibly including profile retrievals for the TCCON data)

    Stratosphaerische Ozonvariationen im Bereich des arktischen Polarwirbels (II). Bd. 6 Bestimmung stratosphaerischer Ozonprofile aus Spektren eines bodengebundenen Mirkowellen-Radiometers. Abschlussbericht

    No full text
    Stratospheric ozone measurements were made with a mircowave radiometer on Ny-Aalesund on Spitsbergen (79 N, 11 E) in February 1994. The vertical solution of the recorded profiles was between 10 and 15 km. The profiles are in good agreement with in situ measurements of ozone probes. On the basis of the ozone profiles of the radiometer measurements, ozone column densities above a height of 15 km can be calculated. The evaluations of the measurements of February 1994 show no unusual ozone concentrations, but ozone mixing ratios may vary strongly within a few hours. However, this is not caused by chemical but by dynamic proceses. This is one advantage of microwave radiometry: In contrast to other methods of measurement, measurements can be made with high time resolution over a long period of time. (orig./KW)In dieser Arbeit werden Messungen stratosphaerischen Ozons mit einem Mikrowellen-Radiometer in der Arktis untersucht. Die betrachteten Messungen wurden in Ny-Aalesund, Spitzbergen (79 N, 11 O) im Februar 1994 durchgefuehrt. Es konnten Profile des Ozonmischungsverhaeltnisses fuer einen Hoehenbereich von etwa 15-55 km berechnet werden. Die vertikale Aufloesung der bestimmten Profile liegt zwischen 10 km und 15 km. Diese Profile zeigen eine sehr gute Uebereinstimmung mit in situ Messungen von Ozonsonden. Es ist moeglich, aus den Ozonprofilen der Radiometermessungen Ozon-Saeulendichten oberhalb von 15 km Hoehe zu berechnen. Die Auswertung der Messungen aus dem Februar 1994 zeigt keine aussergewoehnlichen Ozonkonzentrationen. Es koennen aber zum Teil starke Schwankungen des Ozonmischungsverhaeltnisses innerhalb weniger Stunden beobachtet werden, die allerdings nicht auf chemische, sondern dynamische Prozesse zurueckzufuehren sind. Hierin zeigt sich ein Vorteil der Mikrowellen-Radiometrie gegenueber anderen Messverfahen: Es ist moeglich, ueber einen langen Zeitraum mit hoher zeitlicher Aufloesung zu messen. (orig./KW)Diploma thesis submitted by Bjoern-Martin SinnhuberSIGLEAvailable from TIB Hannover: QN 132(6)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman

    Chapter 10: SCIAMACHY's View of the Changing Earth's Atmosphere

    No full text
    Since August 2002 SCIAMACHY delivers a wealth of high-quality data permitting to study the status of the Earth’s atmosphere. Enhanced concentrations of greenhouse gases are identified as the major source of global warming and their atmospheric concentrations are increasing. SCIAMACHY monitors the most prominent species such as CO2, CH4 and water vapour, the latter including isotope variants. Further anthropogenic impacts on the troposphere occur by emission of reactive trace gases contributing to pollution and affecting air quality. With SCIAMACHY their global, regional and even local signatures can be detected. Long-term analyses document how the emissions of NO2, SO2, HCHO, CHOCHO and CO evolve with time. In addition, the halogen cycle of polar BrO and IO, both of natural origin, is studied. The stratosphere is the layer where public interest in the Earth’s atmosphere has begun to grow with the detection of the ozone hole in the mid-1980’s. Until the mid-1990s a steady decrease has been observed in the ozone abundance. The most striking feature is the massive loss of stratospheric ozone over Antarctica during each southern spring. In order to detect possible signs of recovery, SCIAMACHY contributes to the continuous monitoring of the ozone layer, the ozone hole, Polar Stratospheric Clouds (PSC) and species impacting the ozone chemistry such as NO2, OClO and BrO. A much more poorly explored region is the mesosphere and lower thermosphere, which forms the transition between interplanetary space and the terrestrial atmosphere. This region is dominated by extraterrestrial impacts as well as couplings to the lower atmosphere. With SCIAMACHY’s limb viewing capabilities Noctilucent Clouds (NLC) are studied providing insight into generation and depletion mechanisms. At times of strong solar activity, SCIAMACHY measurements reveal how the chemistry of the upper atmosphere is disturbed. By analysis of emission lines in SCIAMACHY spectra the composition of the thermosphere above 100 km can be studied. SCIAMACHY is the first instrument to globally observe the metal layers in the upper mesosphere / lower thermosphere (MLT) region. When applying appropriate retrieval techniques it is meanwhile possible to derive vegetation information over land and phytoplankton characteristics in the oceans from SCIAMACHY data. Finally SCIAMACHY even has proven useful in planetary science by measuring spectra of our solar system neighbour Venu

    Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems

    No full text
    corecore