17 research outputs found

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    Advanced Reservation-based Scheduling of Task Graphs on Clusters

    No full text
    Abstract. A Task Graph (TG) is a model of a parallel program that consists of many subtasks that can be executed simultaneously on different processing elements. Subtasks exchange data via an interconnection network. The dependencies between subtasks are described by means of a Directed Acyclic Graph. Unfortunately, due to their characteristics, scheduling a TG requires dedicated or uninterruptible resources. Moreover, scheduling a TG by itself results in a low resource utilization because of the dependencies among the subtasks. Therefore, in order to solve the above problems, we propose a scheduling approach for TGs by using advance reservation in a cluster environment. In addition, to improve resource utilization, we also propose a scheduling solution by interweaving one or more TGs within the same reservation block and/or backfilling with independent jobs.
    corecore