116 research outputs found

    Mapping of B-cell epitopic sites and delineation of functional domains on the hemagglutinin-neuraminidase protein of peste des petits ruminants virus

    Get PDF
    A recombinant baculovirus expressing membrane bound form of hemagglutinin-neuraminidase (HN) protein of peste des petits ruminants virus (PPRV) was employed to generate monoclonal antibodies (mAbs) against PPRV-HN protein. Four different mAbs were employed for mapping of regions on HN carrying B-cell epitopes using deletion mutants of PPRV-HN and RPV-H proteins expressed in Escherichia coli as well as PPRV-HN deletion proteins expressed transiently in mammalian cells. The immuno-reactivity pattern indicated that all mAbs bind to two discontinuous regions of amino acid sequence 263-368 and 538-609 and hence the epitopes identified are conformation-dependent. The binding regions for three mAbs were shown to be immunodominant employing competitive ELISA with vaccinated sheep sera. Delineation of functional domains on PPRV-HN was carried out by assessing the ability of these mAbs to inhibit neuramindase activity and hemagglutination activity. Two mAbs inhibited NA activity by more than 63% with substrate N-acetyl neuraminolactose, while with Fetuin one mAb showed inhibition of NA activity (95%). Of the three antigenic sites identified based on competitive inhibition assay, site 2 could be antigenically separated into 2a and 2b based on inhibition properties. All the four mAbs are virus neutralizing and recognized PPRV-HN in immunofluorescence assay

    MHC immunoevasins: protecting the pathogen reservoir in infection

    Get PDF
    Alteration of antigen recognition by T cells as result of insufficient major histocompatibility complex (MHC)-dependent antigen-presenting function has been observed in many cases of infections, particularly in in vitro systems. To hide themselves from an efficient immune response, pathogens may act on MHC-related functions at three levels: (i) by limiting the number of potential antigens that can be presented to naive T cells; (ii) by synthesizing proteins which directly affect MHC cell-surface expression; and (iii) by altering the normal intracellular pathway of peptide loading on MHC. Here, we review examples of pathogens' action on each single step of MHC function and we suggest that the result of these often synergistic actions is both a limitation of the priming of naive T cells and, more importantly, a protection of the pathogen's reservoir from the attack of primed T cells. The above mechanisms may also generate a skewing effect on immune effector mechanisms, which helps preserving the reservoir of infection from sterilization by the immune system

    Seasonal and inter-seasonal RSV activity in the European Region during the COVID-19 pandemic from autumn 2020 to summer 2022

    Get PDF
    Background The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in early 2020 and subsequent implementation of public health and social measures (PHSM) disrupted the epidemiology of respiratory viruses. This work describes the epidemiology of respiratory syncytial virus (RSV) observed during two winter seasons (weeks 40–20) and inter-seasonal periods (weeks 21–39) during the pandemic between October 2020 and September 2022. Methods Using data submitted to The European Surveillance System (TESSy) by countries or territories in the World Health Organization (WHO) European Region between weeks 40/2020 and 39/2022, we aggregated country-specific weekly RSV counts of sentinel, non-sentinel and Severe Acute Respiratory Infection (SARI) surveillance specimens and calculated percentage positivity. Results for both 2020/21 and 2021/22 seasons and inter-seasons were compared with pre-pandemic 2016/17 to 2019/20 seasons and inter-seasons. Results Although more specimens were tested than in pre-COVID-19 pandemic seasons, very few RSV detections were reported during the 2020/21 season in all surveillance systems. During the 2021 inter-season, a gradual increase in detections was observed in all systems. In 2021/22, all systems saw early peaks of RSV infection, and during the 2022 inter-seasonal period, patterns of detections were closer to those seen before the COVID-19 pandemic. Conclusion RSV surveillance continued throughout the COVID-19 pandemic, with an initial reduction in transmission, followed by very high and out-of-season RSV circulation (summer 2021) and then an early start of the 2021/22 season. As of the 2022/23 season, RSV circulation had not yet normalised

    Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom : 2015/16 mid-season results

    Get PDF
    In 2015/16, the influenza season in the United Kingdom was dominated by influenza A(H1N1)pdm09 circulation. Virus characterisation indicated the emergence of genetic clusters, with the majority antigenically similar to the current influenza A(H1N1)pdm09 vaccine strain. Mid-season vaccine effectiveness (VE) estimates show an adjusted VE of 41.5% (95% confidence interval (CI): 3.0–64.7) against influenza-confirmed primary care consultations and of 49.1% (95% CI: 9.3–71.5) against influenza A(H1N1)pdm09. These estimates show levels of protection similar to the 2010/11 season, when this strain was first used in the seasonal vaccine

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and Îł-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses

    The impact of social and physical distancing measures on COVID-19 activity in England: findings from a multi-tiered surveillance system

    Get PDF
    BACKGROUND: A multi-tiered surveillance system based on influenza surveillance was adopted in the United Kingdom in the early stages of the coronavirus disease (COVID-19) epidemic to monitor different stages of the disease. Mandatory social and physical distancing measures (SPDM) were introduced on 23 March 2020 to attempt to limit transmission. AIM: To describe the impact of SPDM on COVID-19 activity as detected through the different surveillance systems. METHODS: Data from national population surveys, web-based indicators, syndromic surveillance, sentinel swabbing, respiratory outbreaks, secondary care admissions and mortality indicators from the start of the epidemic to week 18 2020 were used to identify the timing of peaks in surveillance indicators relative to the introduction of SPDM. This timing was compared with median time from symptom onset to different stages of illness and levels of care or interactions with healthcare services. RESULTS: The impact of SPDM was detected within 1 week through population surveys, web search indicators and sentinel swabbing reported by onset date. There were detectable impacts on syndromic surveillance indicators for difficulty breathing, influenza-like illness and COVID-19 coding at 2, 7 and 12 days respectively, hospitalisations and critical care admissions (both 12 days), laboratory positivity (14 days), deaths (17 days) and nursing home outbreaks (4 weeks). CONCLUSION: The impact of SPDM on COVID-19 activity was detectable within 1 week through community surveillance indicators, highlighting their importance in early detection of changes in activity. Community swabbing surveillance may be increasingly important as a specific indicator, should circulation of seasonal respiratory viruses increase

    Fluctuations in the coarsening dynamics of the O(N) model: are they similar to those in glassy systems?

    Full text link
    We study spatio-temporal fluctuations in the non-equilibrium dynamics of the d dimensional O(N) in the large N limit. We analyse the invariance of the dynamic equations for the global correlation and response in the slow ageing regime under transformations of time. We find that these equations are invariant under scale transformations. We extend this study to the action in the dynamic generating functional finding similar results. This model therefore falls into a different category from glassy problems in which full time-reparametrisation invariance, a larger symmetry that emcompasses time scale invariance, is expected to be realised asymptotically. Consequently, the spatio-temporal fluctuations of the large N O(N) model should follow a different pattern from that of glassy systems. We compute the fluctuations of local, as well as spatially separated, two-field composite operators and responses, and we confront our results with the ones found numerically for the 3d Edwards-Anderson model and kinetically constrained lattice gases. We analyse the dependence of the fluctuations of the composite operators on the growing domain length and we compare to what has been found in super-cooled liquids and glasses. Finally, we show that the development of time-reparametrisation invariance in glassy systems is intimately related to a well-defined and finite effective temperature, specified from the modification of the fluctuation-dissipation theorem out of equilibrium. We then conjecture that the global asymptotic time-reparametrisation invariance is broken down to time scale invariance in all coarsening systems.Comment: 57 pages, 5 figure

    COVID-19 deaths in children and young people in England, March 2020 to December 2021: An active prospective national surveillance study.

    Get PDF
    BACKGROUND: Coronavirus Disease 2019 (COVID-19) deaths are rare in children and young people (CYP). The high rates of asymptomatic and mild infections complicate assessment of cause of death in CYP. We assessed the cause of death in all CYP with a positive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) test since the start of the pandemic in England. METHODS AND FINDINGS: CYP aged <20 years who died within 100 days of laboratory-confirmed SARS-CoV-2 infection between 01 March 2020 and 31 December 2021 in England were followed up in detail, using national databases, surveillance questionnaires, post-mortem reports, and clinician interviews. There were 185 deaths during the 22-month follow-up and 81 (43.8%) were due to COVID-19. Compared to non-COVID-19 deaths in CYP with a positive SARS-CoV-2 test, death due to COVID-19 was independently associated with older age (aOR 1.06 95% confidence interval (CI) 1.01 to 1.11, p = 0.02) and underlying comorbidities (aOR 2.52 95% CI 1.27 to 5.01, p = 0.008), after adjusting for age, sex, ethnicity group, and underlying conditions, with a shorter interval between SARS-CoV-2 testing and death. Half the COVID-19 deaths (41/81, 50.6%) occurred within 7 days of confirmation of SARS-CoV-2 infection and 91% (74/81) within 30 days. Of the COVID-19 deaths, 61 (75.3%) had an underlying condition, especially severe neurodisability (n = 27) and immunocompromising conditions (n = 12). Over the 22-month surveillance period, SARS-CoV-2 was responsible for 1.2% (81/6,790) of all deaths in CYP aged <20 years, with an infection fatality rate of 0.70/100,000 SARS-CoV-2 infections in this age group estimated through real-time, nowcasting modelling, and a mortality rate of 0.61/100,000. Limitations include possible under-ascertainment of deaths in CYP who were not tested for SARS-CoV-2 and lack of direct access to clinical data for hospitalised CYP. CONCLUSIONS: COVID-19 deaths remain extremely rare in CYP, with most fatalities occurring within 30 days of infection and in children with specific underlying conditions

    COVID-19 vaccine effectiveness against hospitalisation and death of people in clinical risk groups during the Delta variant period: English primary care network cohort study.

    Get PDF
    BACKGROUND: COVID-19 vaccines have been shown to be highly effective against hospitalisation and death following COVID-19 infection. COVID-19 vaccine effectiveness estimates against severe endpoints among individuals with clinical conditions that place them at increased risk of critical disease are limited. METHODS: We used English primary care medical record data from the Oxford-Royal College of General Practitioners Research and Surveillance Centre sentinel network (N > 18 million). Data were linked to the National Immunisation Management Service database, Second Generation Surveillance System for virology test data, Hospital Episode Statistics, and death registry data. We estimated adjusted vaccine effectiveness (aVE) against COVID-19 infection followed by hospitalisation and death among individuals in specific clinical risk groups using a cohort design during the delta-dominant period. We also report mortality statistics and results from our antibody surveillance in this population. FINDINGS: aVE against severe endpoints was high, 14-69d following a third dose aVE was 96.4% (95.1%-97.4%) and 97.9% (97.2%-98.4%) for clinically vulnerable people given a Vaxzevria and Comirnaty primary course respectively. Lower aVE was observed in the immunosuppressed group: 88.6% (79.1%-93.8%) and 91.9% (85.9%-95.4%) for Vaxzevria and Comirnaty respectively. Antibody levels were significantly lower among the immunosuppressed group than those not in this risk group across all vaccination types and doses. The standardised case fatality rate within 28 days of a positive test was 3.9/1000 in people not in risk groups, compared to 12.8/1000 in clinical risk groups. Waning aVE with time since 2nd dose was also demonstrated, for example, Comirnaty aVE against hospitalisation reduced from 96.0% (95.1-96.7%) 14-69days post-dose 2-82.9% (81.4-84.2%) 182days+ post-dose 2. INTERPRETATION: In all clinical risk groups high levels of vaccine effectiveness against severe endpoints were seen. Reduced vaccine effectiveness was noted among the immunosuppressed group

    Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector

    Get PDF
    Abstract Background The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. Results To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. Conclusions We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission
    • …
    corecore