149 research outputs found

    Feasibility of predicting allele specific expression from DNA sequencing using machine learning

    Get PDF
    Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases by modulating penetrance or phenotype severity. However, genome diagnostics is based on DNA sequencing and therefore neglects gene expression regulation such as ASE. To take advantage of ASE in absence of RNA sequencing, it must be predicted using only DNA variation. We have constructed ASE models from BIOS (n = 3432) and GTEx (n = 369) that predict ASE using DNA features. These models are highly reproducible and comprise many different feature types, highlighting the complex regulation that underlies ASE. We applied the BIOS-trained model to population variants in three genes in which ASE plays a clinically relevant role: BRCA2, RET and NF1. This resulted in predicted ASE effects for 27 variants, of which 10 were known pathogenic variants. We demonstrated that ASE can be predicted from DNA features using machine learning. Future efforts may improve sensitivity and translate these models into a new type of genome diagnostic tool that prioritizes candidate pathogenic variants or regulators thereof for follow-up validation by RNA sequencing. All used code and machine learning models are available at GitHub and Zenodo

    Population-based preconception carrier screening:how potential users from the general population view a test for 50 serious diseases

    Get PDF
    With the increased international focus on personalized health care and preventive medicine, next-generation sequencing (NGS) has substantially expanded the options for carrier screening of serious, recessively inherited diseases. NGS screening tests not only offer reproductive options not previously available to couples, but they may also ultimately reduce the number of children born with devastating disorders. To date, preconception carrier screening (PCS) has largely targeted single diseases such as cystic fibrosis, but NGS allows the testing of many genes or diseases simultaneously. We have developed an expanded NGS PCS test for couples; simultaneously it covers 50 very serious, early-onset, autosomal recessive diseases that are untreatable. This is the first, noncommercial, population-based, expanded PCS test to be offered prospectively to couples in a health-care setting in Europe. So far, little is known about how potential users view such a PCS test. We therefore performed an online survey in 2014 among 500 people from the target population in the Netherlands. We enquired about their intention to take an expanded PCS test if one was offered, and through which provider they would like to see it offered. One-third of the respondents said they would take such a test were it to be offered. The majority (44%) preferred the test to be offered via their general practitioner (GP) and 58% would be willing to pay for the test, with a median cost of €75. Our next step is to perform an implementation study in which this PCS test will be provided via selected GPs in the Northern Netherlands

    Population-based preconception carrier screening: how potential users from the general population view a test for 50 serious diseases

    No full text
    With the increased international focus on personalized health care and preventive medicine, next-generation sequencing (NGS) has substantially expanded the options for carrier screening of serious, recessively inherited diseases. NGS screening tests not only offer reproductive options not previously available to couples, but they may also ultimately reduce the number of children born with devastating disorders. To date, preconception carrier screening (PCS) has largely targeted single diseases such as cystic fibrosis, but NGS allows the testing of many genes or diseases simultaneously. We have developed an expanded NGS PCS test for couples; simultaneously it covers 50 very serious, early-onset, autosomal recessive diseases that are untreatable. This is the first, noncommercial, population-based, expanded PCS test to be offered prospectively to couples in a health-care setting in Europe. So far, little is known about how potential users view such a PCS test. We therefore performed an online survey in 2014 among 500 people from the target population in the Netherlands. We enquired about their intention to take an expanded PCS test if one was offered, and through which provider they would like to see it offered. One-third of the respondents said they would take such a test were it to be offered. The majority (44%) preferred the test to be offered via their general practitioner (GP) and 58% would be willing to pay for the test, with a median cost of [euro ]75. Our next step is to perform an implementation study in which this PCS test will be provided via selected GPs in the Northern Netherlands

    Low Detection Rates of Genetic FH in Cohort of Patients With Severe Hypercholesterolemia in the United Arabic Emirates

    Get PDF
    Background: Programs to screen for Familial hypercholesterolemia (FH) are conducted worldwide. In Western societies, these programs have been shown to be cost-effective with hit/detection rates of 1 in 217–250. Thus far, there is no published data on genetic FH in the Gulf region. Using United Arab Emirates as a proxy for the Gulf region, we assessed the prevalence of genetically confirmed FH in the Emirati population sample. Materials and Methods: We recruited 229 patients with LDL-C >95(th) percentile and employed a customized next generation sequencing pipeline to screen canonical FH genes (LDLR, APOB, PCSK9, LDLRAP1). Results: Participants were characterized by mean total cholesterol and low-density lipoprotein cholesterol (LDL-c) of 6.3 ± 1.1 and 4.7 ± 1.1 mmol/L respectively. Ninety-six percent of the participants were using lipid-lowering medication with mean corrected LDL-c values of 10.0 ± 3.0 mmol/L 15 out of 229 participants were found to suffer from genetically confirmed FH. Carriers of causal genetic variants for FH had higher on-treatment LDL-c compared to those without causal variants (5.7 ± 1.5 vs 4.7 ± 1.0; p = 3.7E-04). The groups did not differ regarding high-density lipoprotein cholesterol, triglycerides, body mass index, blood pressure, glucose, and glycated haemoglobin. Conclusion: This study reveals a low 7% prevalence of genetic FH in Emiratis with marked hypercholesterolemia as determined by correcting LDL-c for the use of lipid-lowering treatment. The portfolio of mutations identified is, to a large extent, unique and includes gene duplications. Our findings warrant further studies into origins of hypercholesterolemia in these patients. This is further supported by the fact that these patients are also characterized by high prevalence of type 2 diabetes (42% in the current study cohort) which already puts them at an increased risk of atherosclerotic cardiovascular disease. These results may also be useful in public health initiatives for FH cascade screening programs in the UAE and maybe the Gulf region

    Towards Next-Generation Sequencing (NGS)-Based Newborn Screening:A Technical Study to Prepare for the Challenges Ahead

    Get PDF
    Newborn screening (NBS) aims to identify neonates with severe conditions for whom immediate treatment is required. Currently, a biochemistry-first approach is used to identify these disorders, which are predominantly inherited metalbolic disorders (IMD). Next-generation sequencing (NGS) is expected to have some advantages over the current approach, for example the ability to detect IMDs that meet all screening criteria but lack an identifiable biochemical footprint. We have now designed a technical study to explore the use of NGS techniques as a first-tier approach in NBS. Here, we describe the aim and set-up of the NGS-first for the NBS (NGSf4NBS) project, which will proceed in three steps. In Step 1, we will identify IMDs eligible for NGS-first testing, based on treatability. In Step 2, we will investigate the feasibility, limitations and comparability of different technical NGS approaches and analysis workflows for NBS, eventually aiming to develop a rapid NGS-based workflow. Finally, in Step 3, we will prepare for the incorporation of this workflow into the existing Dutch NBS program and propose a protocol for referral of a child after a positive NGS test result. The results of this study will be the basis for an additional analytical route within NBS that will be further studied for its applicability within the NBS program, e.g., regarding the ethical, legal, financial and social implications.</p

    CoNVaDING:Single Exon Variation Detection in Targeted NGS Data

    Get PDF
    We have developed a tool for detecting single exon copy number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control metric, that excludes or flags low quality exons. Since this quality control shows exactly which exons can be reliably analysed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high quality targets in 320 samples analysed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions. This article is protected by copyright. All rights reserved.</p

    Diagnostic yield of targeted next generation sequencing in 2002 Dutch cardiomyopathy patients

    Get PDF
    BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible

    Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics

    Get PDF
    The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P<0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient

    CAPICE:a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

    Get PDF
    Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice.
    • …
    corecore