2 research outputs found

    Clinical importance of toxin concentration in Amanita verna mushroom

    No full text
    Kaya, Ertugrul/0000-0003-0081-682XWOS: 000339145900009PubMed: 24911374Poisoning from Amanita group of mushrooms comprises approximately 3% of all poisonings in our country and their being responsible for nearly the entire fatal mushroom poisonings makes them important. These mushrooms contain primarily two types of toxins, amatoxins and phallotoxins. Phallotoxins have a more limited toxicity potential and they primarily consist of phalloidin (PHN) and phallacidin (PCN). Amatoxins, on the other hand, are very toxic and they primarily consist of alpha-amanitin (AA), beta-amanitin (BA) and gamma-amanitin (GM. Toxin levels can vary among various species, even among varieties of the same species, of Amanita mushroom family. Revealing the differences between the toxin compositions of the Amanita species that grow in our region may contribute to the clinics of poisonings. Our study aims at showing in detail the toxin levels in various parts of Amanita verna mushroom. A. verna mushrooms needed for toxin analysis were collected from Kozak Plateau near Ayvalik county of Balikesir, Turkey in April 2013. The mushrooms were divided into their parts as pileus, gills, stripe and volva. Following the procedures required before the analysis, the AA, BA, GA, PHN and PCN levels were measured using the RP-HPLC method. While the lowest level of amatoxin was in the volva of the mushroom, the highest was measured in the gills. This was followed by pileus and stripe where the levels were close to each other. Similarly, the highest level of phallotoxin was measured in the gills. Gamma toxin and phalloidin were at lower amounts than the other toxins. A. verna is frequently confused with edible mushrooms with white caps due to its macroscopic similarity. If just one of them is eaten by mistake by an adult person with no mushroom experience, it can easily poison them. The amount of amatoxin is more as compared to Amanita phalloides and A. phalloides var. alba. Particularly, the AA and BA levels are approximately three times higher, whereas GA levels are lower. Similarly, the level of PCN is approximately four times higher as compared to A. phalloides and A. phalloides var. alba; by contrast, the level of PNH is about a half of theirs. In summary, it can be said that A. verna is a more toxic mushroom than A. phalloides and has a higher rate of mortality. With our study, the amatoxin and phallotoxin concentrations and distribution in A. verna mushrooms were shown in detail for the first time and it would be useful to carry out more similar studies with other members of Amanita family growing in various parts of the world. (C) 2014 Elsevier Ltd. All rights reserved

    Amanitin and phallotoxin concentration in Amanita phalloides var. alba mushroom

    No full text
    Yaykasli, Kursat/0000-0001-7550-6370; Saritas, Ayhan/0000-0002-4302-1093; Saritas, Ayhan/0000-0002-4302-1093; Kaya, Ertugrul/0000-0003-0081-682XWOS: 000328658600028PubMed: 24139877Although rarely seen, Amanita phalloides var. alba, a variety of A. phalloides type mushrooms, causes mushroom poisoning resulting in death. Since it is frequently confused with some edible mushrooms due to its white colored cap and macroscopic appearance, it becomes important in toxicological terms. Knowledge of the toxin amount contained in this mushroom type is invaluable in the treatment of cases involving poisoning. In this study, we examined the toxin levels of various parts of the A. phalloides var. alba mushroom growing Duzce region of Turkey. Toxin analyses were carried out for A. phalloides var. alba, which were collected from the forests Duzce region of Turkey in 2011, as a whole and also separately in its spore, pileus, gills, stipe and volva parts. The alpha amanitin, beta amanitin, gamma amanitin, phalloidin and phallacidine analyses of the mushrooms were carried out using the RP-HPLC method. A genetic analysis of the mushroom showed that it had similar genetic characteristics as A. phalloides and was a variety of it. The lowest toxins quantity was detected in spores, volva and stipe among all parts of the mushroom. The maximum amount of amatoxins was measured in the gills. The pileus also contained a high amount of amatoxins. Generally, amatoxins and phallotoxin concentrations were lower as compared to A. phalloides, but interestingly all toxins other than gamma toxin were higher in the spores of A. phalloides var. alba. The amount of toxin in all of its parts had sufficient concentrations to cause death. With this study, the amatoxin and phallotoxin concentrations in A. phalloides var. alba mushroom and in its parts have been revealed in detail for the first time. (C) 2013 Elsevier Ltd. All rights reserved
    corecore