48 research outputs found

    Dystonia of the Oromandibular, Lingual and Laryngeal Areas

    Get PDF

    Relativistic coupled-cluster-based linear response theory for ionization potentials of alkali-metal and alkaline-earth-metal atoms

    Get PDF
    We have developed and applied the relativistic coupled-cluster-based linear response theory (RCCLRT) for computing the principal as well as the shake-up ionization potentials (IP's) of Li, Be, Na, and Mg where the single-particle orbitals are generated by solving the relativistic Hartree-Fock-Roothaan equations using the Gaussian basis functions on a grid. The computed principal and shake-up ionization energies by the RCCLRT approach are in favorable agreement with the experimental results. Since for the (one-valence) IP problem, there is a formal equivalence between the principal IP values as obtained from the CCLRT and those obtained as eigenvalues of the multireference coupled-cluster theory, the computed quantities are fully size extensive. The approach via the RCCLRT has the additional advantage of providing the shake-up IP's as well. These are, however, not fully size extensive, but the error scales as the number of valence excitations (2h-1p), so the inextensivity error is rather small

    Core effects on ionization potentials in thallium

    Get PDF
    Ionization potentials (IP's) are evaluated for various excited states of Tl using the relativistic coupled cluster (CCCD) theory in the even-parity pair channel approximation (CCSD-EPC). An average accuracy below half a percent is reached. The effect of deep core electrons on the core-valence correlations is investigated. It is found that electrons in the third subshell (n=3) modify the IP's of the 6p orbitals by 100 cm-1. By comparison with calculations made in the linearized CCSD (LCCSD) approximation it is demonstrated that nonlinear contributions are mandatory to reach an accuracy below half a percent for the 6p½ orbital

    Relativistic coupled cluster calculations of the energies for rubidium and cesium atoms

    Get PDF
    Ionization potentials and excitation energies of rubidium and cesium atoms are computed using the relativistic coupled cluster (CC) method. The effect of electron correlations on the ground and excited state properties is investigated using different levels of CC approximations and truncation schemes. The present work demonstrates that the even-parity channel truncation scheme produces results almost as accurate as obtained from the all-parity channel approximation scheme at a reduced computational cost. The present study also indicates that for a given basis the linearized CC method tends to overestimate the ground and excited state properties compared to the full CC method

    DSG3 As a Biomarker for the Ultrasensitive Detection of Cccult Lymph Node Metastasis in Oral Cancer Using Nanostructured Immunoarrays

    Get PDF
    OBJECTIVES: The diagnosis of cervical lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) patients constitutes an essential requirement for clinical staging and treatment selection. However, clinical assessment by physical examination and different imaging modalities, as well as by histological examination of routine lymph node cryosections can miss micrometastases, while false positives may lead to unnecessary elective lymph node neck resections. Here, we explored the feasibility of developing a sensitive assay system for desmoglein 3 (DSG3) as a predictive biomarker for lymph node metastasis in HNSCC. MATERIALS AND METHODS: DSG3 expression was determined in multiple general cancer- and HNSCC-tissue microarrays (TMAs), in negative and positive HNSCC metastatic cervical lymph nodes, and in a variety of HNSCC and control cell lines. A nanostructured immunoarray system was developed for the ultrasensitive detection of DSG3 in lymph node tissue lysates. RESULTS: We demonstrate that DSG3 is highly expressed in all HNSCC lesions and their metastatic cervical lymph nodes, but absent in non-invaded lymph nodes. We show that DSG3 can be rapidly detected with high sensitivity using a simple microfluidic immunoarray platform, even in human tissue sections including very few HNSCC invading cells, hence distinguishing between positive and negative lymph nodes. CONCLUSION: We provide a proof of principle supporting that ultrasensitive nanostructured assay systems for DSG3 can be exploited to detect micrometastatic HNSCC lesions in lymph nodes, which can improve the diagnosis and guide in the selection of appropriate therapeutic intervention modalities for HNSCC patients
    corecore