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We have developed and applied the relativistic coupled-cluster-based linear responséREIRT) for
computing the principal as well as the shake-up ionization poteritRls) of Li, Be, Na, and Mg where the
single-particle orbitals are generated by solving the relativistic Hartree-Fock-Roothaan equations using the
Gaussian basis functions on a grid. The computed principal and shake-up ionization energies by the RCCLRT
approach are in favorable agreement with the experimental results. Since f@ntealenceIP problem,
there is a formal equivalence between the principal IP values as obtained from the CCLRT and those obtained
as eigenvalues of the multireference coupled-cluster theory, the computed quantities are fully size extensive.
The approach via the RCCLRT has the additional advantage of providing the shake-up IP’s as well. These are,
however, not fully size extensive, but the error scales as the number of valence excitatiehp)(Xo the
inextensivity error is rather sma(lS1050-294{®@9)01907-1

PACS numbd(s): 31.15.Dv

[. INTRODUCTION tinuum dissolution is formally avoided by introducing suit-
able projection operatofd 4].
It is now widely recognized that the coupled-clustéc) In this paper, we report the results of our calculation for

methodology{1-12] is one of the most powerful nonpertur- principal as well as shake-up ionization potentials of Li, Be,
bative techniques for studying the electronic structure of atNa, and Mg using the coupled-cluster-based linear response
oms and molecules. It has been applied with great success theory (CCLRT) [21-27 as extended to handle relativistic

a wide variety of problems involving a host of atomic and systems(RCCLRT). We have used a kinetically balanced
molecular systems. The cluster expansion of the wave fundinite Gaussian basis set expansi¢iBSE) to represent oc-
tion in the CC approach provides, in a straightforward man-<cupied and virtual orbitals. Recently, we have developed a
ner, the size extensivity of the computed energigsmany-  hybrid technique to solve the atomic relativistic self-
body parlance, the term size extensivity implies that theconsistent fieldSCH equations using a finite baskineti-
energy expression must consist of connected guantitiesally balanceglexpansion methof28]. While the numerical
When this is satisfied, the theory is called size extenislyi¢  Dirac-Fock(DF) calculations are more compact and accurate
However, it is rather surprising that while the coupled-clusterthan the FBSE approach, the latter has some distinct advan-
methods have been extensively applied to a wide variety ofages over the former. First of all, the accuracy of the total
nonrelativistic atomic and molecular systefnanging from energy and wave function obtained through the Dirac-Fock-
helium to free base porphii3]), only a few attempts have Roothaan equatiorirelativistic SCF as in the FBSE ap-
been made to extend them to the relativistic regime. This igproach can,in principle, be enhanced to any degree by in-
due largely to the fact that the relativistic one-particle spinorsreasing the number of basis functions, and, secondly, the
obtained from the self-consistent Dirac-Fock equations argieneration of the occupied and virtual orbitals does not re-
numerous and consequently the post-Dirac-Fock applicationguire separate computations. It has been found that the nu-
using those spinors are computationally more time consummerical wave functionf29] provide a more accurate descrip-
ing than those in the nonrelativistic case. In addition, there ision of the orbitals in the asymptotic region than the
the occurrence ofariational collapseor bound failure in the analytical onegusing the FBSE approaghbut on the other
relativistic self-consistent field equations with the attendantand, the FBSE approach is more convenient for generating
continuum dissolutiorj14]. This makes post-Hartree-Fock the orbitals. This indicates that an appropriate combination
calculations using either the perturbative or nonperturbativef these two approaches can be profitably used to generate
expansion somewhat problematic from a formal point ofthe single-particle spinors from a single computation. In our
view. Prompted by the initial success on the bound failurenybrid method, the atomic orbitals are expanded in terms of
problem with the finite basis methods, considerable progresthe basis functions where the latter are defined on a grid, but
has been made in solving the relativistic self-consistent fieldhe one- and two-electron radial integrals appearing in the
equation for many-electron systems using the finite basi®irac-Fock-Roothaan matrix are evaluated numerically as
method, and, in recent years, there has been an increasegposed to the conventional Dirac-Fock-Roothaan approach
interest in the application of many-body perturbation theory[28]. The hybrid scheme is also numerically efficient because
(MBPT) and coupled-cluster methods to relativistic atomicit can provide an easy route to the implementation of 2
and molecular systen{d5-20 where the problem of con- XN, operationsboth the direct and exchange two-electron
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integral evaluations involvéN. operations and need to be known as equation of motion CC or EOM-C{21-27 and
computed separately in our approaghather thanN>xN,  the closely related formalism called symmetry adapted clus-
operations in the evaluation of two-electron integf@lgac-  ter configuration interactiofSAC-CI) [31] are typical ex-
Fock potential termin DF-SCF equationgHere,N andN,  amples of core-extensive CC formulations for energy differ-
denote the number of basis functions and occupied orbitalg€nces[The SAC-Cl is a theory for the excited states. In this
respectively. method the excited state configuration state functi@sr3

For computing the energy differences of spectroscopic in&® generated by the action of a suitable excitation operator

terest through the CC method, one has two options to choogd! theé ground state wave function where the latter is ob-
depending upon the type of extensivity that one wishes tdained by the action symmetry adapted cluster operator on

ensure on the computed energies. For instance, starting wfe unperturbed ground state CHRBoth time-dependent
a certain model of space functions of partial hole-particlel2L] and time-independerji22] CCLRT formulations have

occupancy, one may generate a full cluster expansion invoh26€n developed for the energy difference computations of
ing all possible cluster excitations from the “corétoubly which the Ia_tter provides a more direct formulation as eigen-
occupied part of the model space functipas well as from V@lue equations foAE, . There are yet no CCLRT applica-
the “valence” (partially occupied part of the model func- tions for energy difference calculations where relativistic ef-

tions orbitals. The CC theory that uses the full cluster ex-€Cts are important. The full cluster expansion of the core-
pansions of this type is called the “core-valence” extensiveValence extensive variety was, however, applied in
CC theory because it ensures the extensivity of the computetPMPUting the ionization energies of relativistically impor-
energies with respect to the core as well as the valence elel@Nt Systems some years ad®-20.

trons separately. What this essentially means is the follow- !N this paper, we present the ionization potentials and ex-
ing: the total energy of an excited/ionized st&gis addi-  Citation energiedEE) (obtained as a by-prodycof alkali-
tively separable to a sum of the ground state endggnd metal and alkaline-earth-metal atoms computed through the

the energy differencesE, , where both the ground state and CC approach using the relativistic wave functions generated

energy differences are computed in a size-extensive mannfirough the hybrid DF-SCF approach. Since the electron cor-

with respect to all electrongNote that as above, an alterna- relation is significant for the alkaline-earth-metal atoms com-

tive CC approach is also in use, where extensivity of thdPared to the alkali-metal atoms, the computations of transi-

computed energies is maintained with respect to all the ekegion energies for the former will provide a more stringent test

trons without dissecting it into core and valence separatel r‘: theh qr:JaIri;[y .Of the single-pharticleh orbitals gengratgad
[11].) Here, one may argue that since the bulk contribution tgrough the hybrid DF-SCF method. The second motivation

E, comes from the ground state eneiy, with AE, only a of this work is to improve the accuracy of the theoretically
small component, it would suffice to compute the groundcor_:]ﬁ”ted tran5|t|onkegerg|es of thesi SySFE%:néSL.RT |
state energyE, in a completely size-extensive manner and e present work demonstrates that hot only

treat AE, in a size-inextensive manner. The difference inp_roduce.s highly accurat_e_ ionization energies bL.’t a!so a pre-
cise estimation of transition energies. It also highlights the

energies computed in this fashion will then be size inexten: S .
sive only with respect to partial valence occupancies. If thémportance of the electron correlation in the computation of

number of valence occupancies is small compared to thignization and transition energies. However, since the sys-

doubly occupied orbital, then the computed energy differ-€Ms studied here are neither heavy nor highly stripped, no

ences will have rather small size-inextensive ef&f)]. The attenkmtstr?av; betc_en ”.‘aP'e to quantify the relativistic effect.
core-extensive CC theories of this type are characterized bWor In IS direction IS In progress.

the presence of the CC form for the ground state wave func- Section |l beg"?s with a br'ief review of the CCL.RT
tion and the configuration interactiaf€l) form for the va- method for computing energy differences. The generation of

lence correlation part in the description of the excited/single-particle orbitals through DF-SCF and computational

ionized states. It should be emphasized that although thgeetails along with the numerical results are described in

core-extensive and core-valence-extensive CC theories ar®>: Il and IV, respectively.

formally equivalent for single-valence systems, i.e., for elec-

tron attachmentEA) and detachment procesdesnization  Il. CCLRT FOR ENERGY DIFFERENCE CALCULATIONS
potentials(IP)], CCLRT has some distinct advantages over

- . Since the basic formalism of the time-independent version
the core-valence open-shell CC theory. Being an eigenvalue . ;
equation, CCLRT does not suffer from convergence prob—mc the CCLRT is available elsewhei@2-2§, we only
resent a general overview of that approach. Let us assume

lems like the core-valence-extensive open-shell CC metho
b that we have already solved for tieelectron ground state

and provides all the desired roots including the valence ion . ;
P 9 ¥, dominated by the closed-shell single reference Hartree-

ization energies as well as ionization energies for the ) : :
shake-up states in a one shot. The ionization energies f jock function®, via the single reference CC thedigRCQ

shake-up statefgenerally called the satellite energieme 1.2k

important in the sense that it provides a better description of

the experimental photoionization spectra. It is worthwhile to | Vo) =exp(T)|®g), (2.)

mention that when the dimension of the CCLRT matrix for

IP/EA becomes too large or if all the roots are not requiredwhere exp() is the CC representation of the wave operator

then it is computationally simpler to compute the IP/EA val-for the ground state. The cluster operafoconsists of vari-

ues through the multireference CC meth®RCC). ous np-nh excitationsT,, from the particle-hole vacuum
Coupled-cluster-based linear response theoriatso state®,. The cluster amplitudes of variousp-nh excita-
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tions are found in SRCC theory by equating-nh ampli- _—

tudes of the transformed Hamiltonian exp)H exp(T) to rE; EJ: (@M|[H,Z]"¥]| @) Ci=AECY". (2.11)
zero, i.e., '

Since the variousp-nh amplitudes of the ground state clus-
ter componentd,, have been evaluated by equating-nh

where |®™")'s are variousnp-nh excited determinants. @mplitudes oH in the CC theoryH|®o)=0 and, hence, Eq.

Here,np and nh stand for the number of particle creation (2-11 can be rewritten as

and hole annihilation operators acting on the reference deter-

minant. > 2 (PMH[P]CIT=AECT". (212
In CCLRT formalism, an K+ Ng)-electron excited/ rs j ’ ’

ionized state is represented as

(®"|exp(—T)H exp(T)|P) =0, (2.2

Equation(2.12 constitutes the CCLRT equation for thBl (

W) =W exp(T)|®o), (2.3  +N,) excited/ionized states. Once the matrix elements of

. S _ are constructed from the matrix elementstbfand T, the
mzer(?\l\{:‘/kle aln ?XC|tat:o:/|o?|_Z?tlonsvcs)lgerator ::rea]ttlng_the computation of the energy differencés, boiled down to
( e)-electron state of interest, consists of vari- o diagonalization of the matriRm,n,r,sE<(D=ﬂ,n|H|q)J(,s>.

ous mp-nh (m—n=N,) excitation operators which create _. ~ . . AR .
mp-nh excited states out ab,. Clearly, N;=—1 for ion- SinceH is obtained via a similarity transformation, the ma-

ization process, and henwl should contairmp-nh exci- trix elements ofd are non-Hermitian and, therefore, matrix

tation operators witn—n=—1. Ris also non-Hermitian.
Using the equation of motion form fcE, (that is why For practical purpose, it is absolutely necessary to trun-

+
CCLRT is also termed as EOM-GCthe relevant equations Caté bothT, andW after somenp-nh andmp-nh rank and

for the difference energy calculation can be written as th()? most widely used truncation schemes Toand W}, (for
IP) are
[H,Wi1expT)|®o) = AEW{ expT)|®o). (2.9
T=T+T,, W=W w2 (213
SinceW] and expl) commute, premultiplying Eq2.4) by
exp(—T) and commuting exf) againsth we get IIl. COMPUTATIONAL DETAIL
[H,W]|®o)=AE W | D), (2.5 Generation of basis and integrals

In the realm of the relativistic many-body problem, we

where start from the Dirac-Coulomb Hamiltonian that can be con-
~ veniently written as
Fi=exp(— T)H exp(T). 2.6 y
. N 1 2
Introducing the dressed Hamiltonidh by the relation H=El [ca;-pi+(Bi—1)ME+Vdri)]+ > ; m
1= 1#] i—Tj
exp(—T)H exp(T)=H+E, 2.7 (3.1

in which the Dirac operatoré and g are expressed in terms
of Pauli matrices andl is the 2<2 unit matrix.

In the central field approximation, the SCF equations are
determined by minimizing the energy functiorfalwith re-

whereE, is the number component &f andH contains the
operator components &f, we obtain

[':"WM(DOFAEKWU(I)O% (2.8 spect tod, whereE is given by
whereAE, =E—Eg,. N
Let us now define the composiw] in terms of various E:<q> > [ca; pi+(Bi—1)ME+V, )]

mp-nh components as i=1

t 2 tm,n + 1 2 e’ 1) (3.2

W = W ! y 29 Y > - 3 .

k - k ( ) 2i:#j |ri_rj|

with and determinantal wave functigantisymmetri¢ u is built

from single-particle orbitals
r_lan(r)XKm(07¢) )

e —1

where Ci" are the variousth component of themp-nh Ol 6,)

excitations andz/™" are products of thenp-nh creation wherer P, (r) andr1Q,.(r) are the large and small
operators. Substituting E2.9) [along with Eq.(2.10] into  component radial wave functions, respectively, that satisfy
Eq. (2.8 we get the orthonormality condition

Wl””‘:Ei: cpnzimn, (2.10

u(r,, ¢)=( (3.3
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% Though any basis functions can be used, we have chosen
JO dr[Pne(NPnr (1) + QN Qnri(r)]=6nn . (3.4 Gaussian-type orbital3TO9 that have the following form
for the large component:

Here, the quantum numbaer classifies the orbital according L  ArL N agr?
to its symmetry and is given by gup(r)=Npr'e™ (3.9
1 with

wherel is the orbital quantum number arjé=1=1 is the whereao,ﬂ are user defined constants, fpecifies the or-
total angular quantum number. Here, the spingts(6, ¢) _blta_l symmetry(1 for s, 2 for p, etc) and NV, is the normal-
are given by ization factor for the large component. The small component
part of the basis function is obtained by imposing the kinetic
balance and has the form

1
Xem™— El C(Izj;m_U,O' Yl,m—(r(ald))nai (36)

d «
otx S —_A/S L
2 ng(r)_Np a*’? ng(r), (311)

where C(13j;m—o,0) and Y| ,_,(6,¢) represent the
Clebsch-Gordan coefficients and the normalized spherical
harmonics, respectively, and theg, stands for the two-

o

o
component spinors. P [4(k%>+k+n,)—1]. (3.12

Now, it has been found that the numerical wave functions 2n,—1
have more accurate asymptotic behavior than the analytlcqlhe imposition of kinetic balance on the small component

ones, though both provide total energies of comparable .a‘ihrough Eq(3.11) allows us to use the same set of exponents
curacy. The accuracy of the total energy and wave functiof, yhe |arge and small component, and hence reduces the
obtained through the Dirac-Fock-Roothaan equafieBSE computational costs. Moreover, Dyall, Grant, and Wilson

methqd canin principle be gnhanc:(_ed to any dggree by in- [34] and Stanton and HauvriliaK35] show that using the re-
creasing the number of basis functions, buteality only a 545, (3.1) the computed kinetic energy approaches

. o . . ; ) téﬁ'noothly to the nonrelativistic limit when the light velocity
tional time increases very rapidly with the increasing num_berc_)oo_ It has also been shown by Stanton and Havriliak that
the calculated energy can fall below the exact energy by an
amount of the order of &# but the error disappears as the
basis becomes complete. The imposition of kinetic balance

X ndition on the small component also provides a better be-
recently _by us[28] to solve the DF equation thTOUQh the havior of the energy functional for determining the orbitals
pseudoeigenvalue approach where basis functions are dShd their energies

fined on a grid and one- and two-electron radial integrals are In the SCF procedure, the integrals and the matrices are

evaluated numerically as opposed to the conventional rel"."évaluated over the members of the basis{gef: rather than

tivistic Hartree-Fock-Roothaan equations. Since the bas'8ver the members of the set of solutiopst because the
functions are defined on a grid and the matrix elements ap- .

Lo . mic or molecular orbitalésolutions of SCF iopar
pearing in the relativistic Hartree-Fock-Roothaan equatlonato ¢ or molecular orbitalsolutions of SCF equationare

. . Tiot known until the calculation is complete. Since these two
are evaluated numerically, this scheme can be regarded as

combination of numerical and analytical approach to the so—sg\tS of functions are related by
lution of DF-SCF equation. Here, like the traditional analyti- N
cal basis set expansion approach, the large and small com- $i=2 Cuidu, (3.13
ponents of the radial wave functions are expressed as linear u=1

combination of basis functions, i.e.,

severely impedes the efficiency of the post-Dirac-Fock com
putations.
In the present paper, we use a hybrid scheme develop

the two-electron matrix element & (the Hartree-Fock po-
tential term) in {¢} basis can be written as

Poe(1) =2 Chogs(r), (3.7)
p
Uj; :z <¢ilﬂc

1
r_12 d’j(ﬂc

and

=3 3 3 cicu 4o,

1
Qne(1) =3 CL0%(1), 38 r_lz’ ¢i¢’”>’ (319
p

which involves a two-index transformation. However, this
where the summation indgxruns over the number of basis two-index transformation process can be easily avoided by
functionsN, gi,(r), andgg,(r) are basis functions belong- evaluating theU;; matrix elements in a mixed basis, i.e., in
ing to the large and small components, respectively,@ibd {¢, ¢} basis. This is trivial, because the occupied orbitals can
and Cfp are the corresponding expansion coefficientsbe updatedlike the density matrixduring the SCF iteration
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TABLE I. First and second ionization potentigh eV) of alkali-

earth metals.

CHAUDHURI, PANDA, DAS, MAHAPATRA, AND MUKHERJEE

lonizing
Atom orbital

Koopmans’ IP MBPT2) CCLRT Experiment

Li 25y 5.342 5386  5.392 5.392
3sy 2.005 2015 2016 2.019
2P 3.500 3536  3.538 3.544
2p3) 3.500 3536  3.535 3.544

Na  3sy 4.954 5.105  5.138 5.139
4s,), 1.906 1.938  1.941 1.948
3py 2.979 3.025  3.049 3.037
3psp 2.977 3.022  3.043 3.035

3Referencd 33].

and, therefore, the two-electron matrix

IV. APPLICATIONS

PRA 60

ionization energies of Li, Be, Na, and Mg atoms with the
experiment and with other availabkb initio works that
roughly consider the same number of active orbitals. There
are a few interesting features that we would like to highlight
here. First of all, we find from Table | that the accuracy of
the ionization potentials estimated through Koopmans’ theo-
rem (KT) [32] and the second order MBPT decrease with
increasing atomic number. We also observed a similar trend
while computing the second order IP across the periodic
table. In fact, this is quite expected because the second order
MBPT (Moller-Plesset inaccurately treats the electron cor-
relation which plays the most significant role in the estima-
tion of the excited/ionized state energies. Since the number
of electrons increases down the group as well as across the
periodic table(for neutral speciesthe error in estimation of
correlation energy through the second order MBPT increases
and hence, the accuracy of calculated IP value decreases.

elementHowever, we do not find any significant deviation in our
(dithcl (1 15)| pj4hc) can be directly computed at each itera- computed CCLRT IP valuésee Table |, fourth columpand
tion without invoking the two-index transformation.

this is exactly what we expect from CCLRT formalism.
Since the CCLRT-IP methothlso CCLRT-EA is formally
equivalent to the core-valence-extensive CC thdary infi-
nite order version of MBPJ it is expected that this method

We employ an uncontracted Gaussian basis that rangesill correctly estimate the dynamical and nondynamical

from 1512p10d (for lithium) to 22s20p15d5f (for magne-

electron correlation effect and, thereby, will provide the cor-

sium) for computing the ionization potentials of Li, Be, Na, rect description of the excited state of interest and its energy.
and Mg through the coupled-cluster-based linear response Table Il presents the computed CCLRT shake-up state

theory.

energies(also called satellite state energied Be and Mg

Table | compares our CCLRT calculation of the valenceatoms and compares with the experimental vdkampiled

TABLE Il. First ionization potentialin eV) of alkaline-earth metals.

Configuration
Atom of the ionized state Koopmans’ IP MBFPZ) CCLRT Experiment
Be 1s%25(93%) 8.417 8.982 9.319 9.322
15%4s(46%) 20.934 20.260
15°55(41%)
15°3s(10%)
15235(62%) 24.371 23.637
15255(32%)
15245(50%) 25.852 25.109
1523s(28%)
15255(19%)
1s2s? (70%) 128.808 124.979 124.552
1s2s6s(13%)

Mg 15225%2pf3s(91%) 6.898 7.521 7.648 7.645
152252p®3s55(53%) 16.924 16.300
152252p®3s65(27%)
152252p®3s45(15%)
1522s2p®3s45(72%) 19.817 19.150
152252p®3s65(27%)
152252p®3s55(43%) 21.284 20.440
15%2s52p83s6s(42%)
15?252p®3s45(13%)
152252p®3s? (21%) 102.890 97.940 99.549

15225%2p,,,2p3,,3s% (75%) 62.267 57.998 59.551
15?25%2p3,,2p3,,3s° (67%) 61.955 56.948 58.533

%Referencd 33].
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TABLE IIl. Excitation energies(in cm™*) of alkali metals. also supported by the CCLRT transition energies of sodium

which are more accurate and consistent than second order
Atom Transition MBPT2) CCLRT Experiment MBPT.

Li 281738y, 27188 27223 27206 V. SUMMARY AND CONCLUDING REMARKS
25,—2py, 14915 14955 14903 . _ .
28,y 2Py, 14916 14964 14904 In this article, we have developed and applied RCCLRT
Na 2511535172 25544 25782 25739 for _c_omputlng |c_)n|z_at|on potentlTaIs. However, by prop_erly
28117—3Pys 16783 16900 16956 fjeflnlng the excitation operat&, , the CCLRT method in
2815 3P0 16801 16849 16973 its present form can also t_)e used to compute the energy
difference of other types, viz., double-ionization potentials
3Referencd 36]. (DIPs), electron affinity, excitation energies, etc. As an illus-

trative numerical application, we have computed the ioniza-
tion energies of Li, Be, Na, and Mg atoms and compared
y&ith the experiment. A uniform and excellent agreement
ith the experiment indicates the power of this theory.

from the excited state energies of the ionized spgc@sm-
pared to the valence ionization potentials, the shake-up sta

energies are less accurate and are slightly overestimate houah CCLRT i ive th h :
Nevertheless, the satellite state energies are still in good' 049 IS a core-extensive theory, the one-valence

agreement with the experiment. These small but nonProblem is a special case vyhere C.CLRT is formally equiva-
negligible discrepancies in the computation of satellite statiem to core-valence extensive multireference C.C theory. Un-
energies can be explained as follows: Unlike the valenc ke MRCC, the energy _d|fferer_lce_ calculation through
ionized states, the character of the shake-up states and ﬁ:sCL_RT proceeds via the diagonalization of a Uonsymme“'c
energy strongly depends upon the quality of the occupied a atrix, and, hence the convergence probiewhich arises
well as the virtual orbitalgto which an electron is being ue to the presence of the mtruder .Stf“‘.‘*@es not appear
promoted. Therefore, we expect the use of extended basiflere. Unless an out of core diagonalization scheme is intro-
functions might improve the quality of the shake-up statesducefd_' the_: CCLRT method may suffer from computational
and its energy. inefficiencies.
We present the excitation energies of Li and Na computed
through CCLRT in Table Ill and compare with experiments
and second order MBPT calculations with this present basis. We thank Professor Uzi Kaldor for valuable discussions.
Table Ill demonstrates that both tise~s ands—p transi- The services and computer facilitie®ower Challenge
tion energies are accurately estimated by the CCLRTRS10000 made available by the Indian Institute of Astro-
method. Although the second order MBPT transition enerphysics are gratefully acknowledged. The auth@®@«.C.,
gies of lithium are more accurate than CCLRT, this agreeP.K.P., and B.P.D.acknowledge the financial support of the
ment is most likely fortuitous, because the second order IDepartment of Atomic EnergyGrant No. 37/15/97—R&D.
values are less accurate than the CCLRT. This conjecture i¥1603).
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