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We have developed and applied the relativistic coupled-cluster-based linear response theory~RCCLRT! for
computing the principal as well as the shake-up ionization potentials~IP’s! of Li, Be, Na, and Mg where the
single-particle orbitals are generated by solving the relativistic Hartree-Fock-Roothaan equations using the
Gaussian basis functions on a grid. The computed principal and shake-up ionization energies by the RCCLRT
approach are in favorable agreement with the experimental results. Since for the~one-valence! IP problem,
there is a formal equivalence between the principal IP values as obtained from the CCLRT and those obtained
as eigenvalues of the multireference coupled-cluster theory, the computed quantities are fully size extensive.
The approach via the RCCLRT has the additional advantage of providing the shake-up IP’s as well. These are,
however, not fully size extensive, but the error scales as the number of valence excitations (2h-1p), so the
inextensivity error is rather small.@S1050-2947~99!01907-1#

PACS number~s!: 31.15.Dv
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I. INTRODUCTION

It is now widely recognized that the coupled-cluster~CC!
methodology@1–12# is one of the most powerful nonpertu
bative techniques for studying the electronic structure of
oms and molecules. It has been applied with great succe
a wide variety of problems involving a host of atomic a
molecular systems. The cluster expansion of the wave fu
tion in the CC approach provides, in a straightforward m
ner, the size extensivity of the computed energies.~In many-
body parlance, the term size extensivity implies that
energy expression must consist of connected quanti
When this is satisfied, the theory is called size extensive@2#.!
However, it is rather surprising that while the coupled-clus
methods have been extensively applied to a wide variet
nonrelativistic atomic and molecular systems~ranging from
helium to free base porphin@13#!, only a few attempts have
been made to extend them to the relativistic regime. Thi
due largely to the fact that the relativistic one-particle spin
obtained from the self-consistent Dirac-Fock equations
numerous and consequently the post-Dirac-Fock applicat
using those spinors are computationally more time cons
ing than those in the nonrelativistic case. In addition, ther
the occurrence ofvariational collapseor bound failure in the
relativistic self-consistent field equations with the attend
continuum dissolution@14#. This makes post-Hartree-Foc
calculations using either the perturbative or nonperturba
expansion somewhat problematic from a formal point
view. Prompted by the initial success on the bound fail
problem with the finite basis methods, considerable prog
has been made in solving the relativistic self-consistent fi
equation for many-electron systems using the finite ba
method, and, in recent years, there has been an incre
interest in the application of many-body perturbation the
~MBPT! and coupled-cluster methods to relativistic atom
and molecular systems@15–20# where the problem of con
PRA 601050-2947/99/60~1!/246~7!/$15.00
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tinuum dissolution is formally avoided by introducing su
able projection operators@14#.

In this paper, we report the results of our calculation
principal as well as shake-up ionization potentials of Li, B
Na, and Mg using the coupled-cluster-based linear respo
theory ~CCLRT! @21–27# as extended to handle relativist
systems~RCCLRT!. We have used a kinetically balance
finite Gaussian basis set expansion~FBSE! to represent oc-
cupied and virtual orbitals. Recently, we have develope
hybrid technique to solve the atomic relativistic se
consistent field~SCF! equations using a finite basis~kineti-
cally balanced! expansion method@28#. While the numerical
Dirac-Fock~DF! calculations are more compact and accur
than the FBSE approach, the latter has some distinct ad
tages over the former. First of all, the accuracy of the to
energy and wave function obtained through the Dirac-Fo
Roothaan equation~relativistic SCF as in the FBSE ap
proach! can, in principle, be enhanced to any degree by i
creasing the number of basis functions, and, secondly,
generation of the occupied and virtual orbitals does not
quire separate computations. It has been found that the
merical wave functions@29# provide a more accurate descrip
tion of the orbitals in the asymptotic region than th
analytical ones~using the FBSE approach!, but on the other
hand, the FBSE approach is more convenient for genera
the orbitals. This indicates that an appropriate combinat
of these two approaches can be profitably used to gene
the single-particle spinors from a single computation. In o
hybrid method, the atomic orbitals are expanded in terms
the basis functions where the latter are defined on a grid,
the one- and two-electron radial integrals appearing in
Dirac-Fock-Roothaan matrix are evaluated numerically
opposed to the conventional Dirac-Fock-Roothaan appro
@28#. The hybrid scheme is also numerically efficient becau
it can provide an easy route to the implementation of
3Nc operations~both the direct and exchange two-electr
246 ©1999 The American Physical Society
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PRA 60 247RELATIVISTIC COUPLED-CLUSTER-BASED LINEAR . . .
integral evaluations involveNc operations and need to b
computed separately in our approach! rather thanN23Nc

operations in the evaluation of two-electron integrals~Dirac-
Fock potential term! in DF-SCF equations.~Here,N andNc

denote the number of basis functions and occupied orbi
respectively.!

For computing the energy differences of spectroscopic
terest through the CC method, one has two options to cho
depending upon the type of extensivity that one wishes
ensure on the computed energies. For instance, starting
a certain model of space functions of partial hole-parti
occupancy, one may generate a full cluster expansion inv
ing all possible cluster excitations from the ‘‘core’’~doubly
occupied part of the model space functions! as well as from
the ‘‘valence’’ ~partially occupied part of the model func
tions! orbitals. The CC theory that uses the full cluster e
pansions of this type is called the ‘‘core-valence’’ extens
CC theory because it ensures the extensivity of the comp
energies with respect to the core as well as the valence e
trons separately. What this essentially means is the foll
ing: the total energy of an excited/ionized stateEk is addi-
tively separable to a sum of the ground state energyE0 and
the energy differencesDEk , where both the ground state an
energy differences are computed in a size-extensive ma
with respect to all electrons.~Note that as above, an altern
tive CC approach is also in use, where extensivity of
computed energies is maintained with respect to all the e
trons without dissecting it into core and valence separa
@11#.! Here, one may argue that since the bulk contribution
Ek comes from the ground state energyE0, with DEk only a
small component, it would suffice to compute the grou
state energyE0 in a completely size-extensive manner a
treat DEk in a size-inextensive manner. The difference
energies computed in this fashion will then be size inext
sive only with respect to partial valence occupancies. If
number of valence occupancies is small compared to
doubly occupied orbital, then the computed energy diff
ences will have rather small size-inextensive error@30#. The
core-extensive CC theories of this type are characterized
the presence of the CC form for the ground state wave fu
tion and the configuration interaction~CI! form for the va-
lence correlation part in the description of the excite
ionized states. It should be emphasized that although
core-extensive and core-valence-extensive CC theories
formally equivalent for single-valence systems, i.e., for el
tron attachment~EA! and detachment processes@ionization
potentials~IP!#, CCLRT has some distinct advantages ov
the core-valence open-shell CC theory. Being an eigenv
equation, CCLRT does not suffer from convergence pr
lems like the core-valence-extensive open-shell CC met
and provides all the desired roots including the valence i
ization energies as well as ionization energies for
shake-up states in a one shot. The ionization energies
shake-up states~generally called the satellite energies! are
important in the sense that it provides a better description
the experimental photoionization spectra. It is worthwhile
mention that when the dimension of the CCLRT matrix f
IP/EA becomes too large or if all the roots are not requir
then it is computationally simpler to compute the IP/EA v
ues through the multireference CC method~MRCC!.

Coupled-cluster-based linear response theories~also
ls,
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known as equation of motion CC or EOM-CC! @21–27# and
the closely related formalism called symmetry adapted c
ter configuration interaction~SAC-CI! @31# are typical ex-
amples of core-extensive CC formulations for energy diff
ences.@The SAC-CI is a theory for the excited states. In th
method the excited state configuration state functions~CSFs!
are generated by the action of a suitable excitation oper
on the ground state wave function where the latter is
tained by the action symmetry adapted cluster operator
the unperturbed ground state CSF.# Both time-dependen
@21# and time-independent@22# CCLRT formulations have
been developed for the energy difference computations
which the latter provides a more direct formulation as eig
value equations forDEk . There are yet no CCLRT applica
tions for energy difference calculations where relativistic
fects are important. The full cluster expansion of the co
valence extensive variety was, however, applied
computing the ionization energies of relativistically impo
tant systems some years ago@15–20#.

In this paper, we present the ionization potentials and
citation energies~EE! ~obtained as a by-product! of alkali-
metal and alkaline-earth-metal atoms computed through
CC approach using the relativistic wave functions genera
through the hybrid DF-SCF approach. Since the electron c
relation is significant for the alkaline-earth-metal atoms co
pared to the alkali-metal atoms, the computations of tran
tion energies for the former will provide a more stringent te
of the quality of the single-particle orbitals generat
through the hybrid DF-SCF method. The second motivat
of this work is to improve the accuracy of the theoretica
computed transition energies of these systems.

The present work demonstrates that RCCLRT not o
produces highly accurate ionization energies but also a
cise estimation of transition energies. It also highlights
importance of the electron correlation in the computation
ionization and transition energies. However, since the s
tems studied here are neither heavy nor highly stripped
attempts have been made to quantify the relativistic effe
Work in this direction is in progress.

Section II begins with a brief review of the CCLR
method for computing energy differences. The generation
single-particle orbitals through DF-SCF and computatio
details along with the numerical results are described
Secs. III and IV, respectively.

II. CCLRT FOR ENERGY DIFFERENCE CALCULATIONS

Since the basic formalism of the time-independent vers
of the CCLRT is available elsewhere@22–26#, we only
present a general overview of that approach. Let us ass
that we have already solved for theN-electron ground state
C0, dominated by the closed-shell single reference Hartr
Fock functionF0 via the single reference CC theory~SRCC!
@1,2#:

uC0&5exp~T!uF0&, ~2.1!

where exp(T) is the CC representation of the wave opera
for the ground state. The cluster operatorT consists of vari-
ous np-nh excitations Tn from the particle-hole vacuum
stateF0. The cluster amplitudes of variousnp-nh excita-
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248 PRA 60CHAUDHURI, PANDA, DAS, MAHAPATRA, AND MUKHERJEE
tions are found in SRCC theory by equatingnp-nh ampli-
tudes of the transformed Hamiltonian exp(2T)H exp(T) to
zero, i.e.,

^F i
n,nuexp~2T!H exp~T!uF0&50, ~2.2!

where uF i
n,n& ’s are variousnp-nh excited determinants

Here, np and nh stand for the number of particle creatio
and hole annihilation operators acting on the reference de
minant.

In CCLRT formalism, an (N1Ne)-electron excited/
ionized state is represented as

uCk&5Wk
† exp~T!uF0&, ~2.3!

where Wk
† is an excitation/ionization operator creating t

kth (N1Ne)-electron state of interest.Wk
† consists of vari-

ous mp-nh (m2n5Ne) excitation operators which creat
mp-nh excited states out ofF0. Clearly, Ne521 for ion-
ization process, and, henceWk

† should containmp-nh exci-
tation operators withm2n521.

Using the equation of motion form forEk ~that is why
CCLRT is also termed as EOM-CC!, the relevant equation
for the difference energy calculation can be written as

@H,Wk
†#exp~T!uF0&5DEkWk

† exp~T!uF0&. ~2.4!

SinceWk
† and exp(T) commute, premultiplying Eq.~2.4! by

exp(2T) and commuting exp(T) againstWk
† we get

@H̃,Wk
†#uF0&5DEkWk

†uF0&, ~2.5!

where

H̃5exp~2T!H exp~T!. ~2.6!

Introducing the dressed HamiltonianĤ by the relation

exp~2T!H exp~T!5Ĥ1Egr , ~2.7!

whereEgr is the number component ofH̃ andĤ contains the
operator components ofH̃, we obtain

@Ĥ,Wk
†#uF0&5DEkWk

†uF0&, ~2.8!

whereDEk5Ek2Egr .
Let us now define the compositeWk

† in terms of various
mp-nh components as

Wk
†5(

m,n
Wk

†m,n , ~2.9!

with

Wk
†m,n5(

i
Ck,i

m,nZi
†m,n, ~2.10!

where Ck,i
m,n are the variousi th component of themp-nh

excitations andZi
†m,n are products of themp-nh creation

operators. Substituting Eq.~2.9! @along with Eq.~2.10!# into
Eq. ~2.8! we get
r-

(
r ,s

(
j

^F i
m,nu@Ĥ,Zj

†r ,s#uF0&Ck, j
r ,s5DEkCk,i

m,n . ~2.11!

Since the variousmp-nh amplitudes of the ground state clu
ter componentsTn have been evaluated by equatingnp-nh

amplitudes ofH̃ in the CC theory,ĤuF0&50 and, hence, Eq
~2.11! can be rewritten as

(
r ,s

(
j

^F i
m,nuĤuF j

r ,s&Ck, j
r ,s5DEkCk,i

m,n . ~2.12!

Equation~2.12! constitutes the CCLRT equation for the (N

1Ne) excited/ionized states. Once the matrix elements oĤ
are constructed from the matrix elements ofH and T, the
computation of the energy differencesDEk boiled down to
the diagonalization of the matrixRi , j

m,n;r ,s[^F i
m,nuĤuF j

r ,s&.
SinceĤ is obtained via a similarity transformation, the m
trix elements ofĤ are non-Hermitian and, therefore, matr
R is also non-Hermitian.

For practical purpose, it is absolutely necessary to tr
cate bothTn andWk

† after somenp-nh andmp-nh rank and
the most widely used truncation schemes forT andWk

† ~for
IP! are

T5T11T2 , Wk
†5Wk

†0,11Wk
†1,2. ~2.13!

III. COMPUTATIONAL DETAIL

Generation of basis and integrals

In the realm of the relativistic many-body problem, w
start from the Dirac-Coulomb Hamiltonian that can be co
veniently written as

H5(
i 51

N

@caW i•pW i1~b i21!mc21Vnuc~r i !#1
1

2 (
iÞ j

e2

urW i2rW j u
,

~3.1!

in which the Dirac operatorsaW andb are expressed in term
of Pauli matrices andI is the 232 unit matrix.

In the central field approximation, the SCF equations
determined by minimizing the energy functionalE with re-
spect toF, whereE is given by

E5K FU(
i 51

N

@caW i•pW i1~b i21!mc21Vnuc~r i !#

1
1

2 (
iÞ j

e2

urW i2rW j u
UFL , ~3.2!

and determinantal wave function~antisymmetric! u is built
from single-particle orbitals

u~r ,u,f!5S r 21Pnk~r !xkm~u,f!

ir 21Qnk~r !x2km~u,f!
D , ~3.3!

where r 21Pnk(r ) and r 21Qnk(r ) are the large and sma
component radial wave functions, respectively, that sat
the orthonormality condition
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E
0

`

dr@Pnk~r !Pn8k~r !1Qnk~r !Qn8k~r !#5dnn8 . ~3.4!

Here, the quantum numberk classifies the orbital accordin
to its symmetry and is given by

k522~ j 2 l !S j 1
1

2D , ~3.5!

where l is the orbital quantum number andj 5 l 6 1
2 is the

total angular quantum number. Here, the spinorsxkm(u,f)
are given by

xkm5 (
s6

1
2

CS l
1

2
j ;m2s,s DYl ,m2s~u,f!hs , ~3.6!

where C( l 1
2 j ;m2s,s) and Yl ,m2s(u,f) represent the

Clebsch-Gordan coefficients and the normalized spher
harmonics, respectively, and thehs stands for the two-
component spinors.

Now, it has been found that the numerical wave functio
have more accurate asymptotic behavior than the analy
ones, though both provide total energies of comparable
curacy. The accuracy of the total energy and wave func
obtained through the Dirac-Fock-Roothaan equation~FBSE
method! can in principle be enhanced to any degree by i
creasing the number of basis functions, butin reality only a
finite number of bases can be used because the com
tional time increases very rapidly with the increasing num
of basis functions. Moreover, the use of large basis functi
severely impedes the efficiency of the post-Dirac-Fock co
putations.

In the present paper, we use a hybrid scheme develo
recently by us@28# to solve the DF equation through th
pseudoeigenvalue approach where basis functions are
fined on a grid and one- and two-electron radial integrals
evaluated numerically as opposed to the conventional r
tivistic Hartree-Fock-Roothaan equations. Since the b
functions are defined on a grid and the matrix elements
pearing in the relativistic Hartree-Fock-Roothaan equati
are evaluated numerically, this scheme can be regarded
combination of numerical and analytical approach to the
lution of DF-SCF equation. Here, like the traditional analy
cal basis set expansion approach, the large and small c
ponents of the radial wave functions are expressed as li
combination of basis functions, i.e.,

Pnk~r !5(
p

Ckp
L gkp

L ~r !, ~3.7!

and

Qnk~r !5(
p

Ckp
S gkp

S ~r !, ~3.8!

where the summation indexp runs over the number of bas
functionsN, gkp

L (r ), andgkp
S (r ) are basis functions belong

ing to the large and small components, respectively, andCkp
L

and Ckp
S are the corresponding expansion coefficien
al

s
al
c-
n

ta-
r
s
-

ed

de-
re
a-
is
p-
s
s a
-

m-
ar

.

Though any basis functions can be used, we have cho
Gaussian-type orbitals~GTOs! that have the following form
for the large component:

gkp
L ~r !5N p

Lr nke2apr 2
, ~3.9!

with

ap5a0bp21, ~3.10!

wherea0 ,b are user defined constants,nk specifies the or-
bital symmetry~1 for s, 2 for p, etc.! andN p

L is the normal-
ization factor for the large component. The small compon
part of the basis function is obtained by imposing the kine
balance and has the form

gkp
S ~r !5N p

SS d

dr
1

k

r Dgkp
L ~r !, ~3.11!

where

N p
S5A ap

2nk21
@4~k21k1nk!21#. ~3.12!

The imposition of kinetic balance on the small compone
through Eq.~3.11! allows us to use the same set of expone
for the large and small component, and hence reduces
computational costs. Moreover, Dyall, Grant, and Wils
@34# and Stanton and Havriliak@35# show that using the re
lation ~3.11! the computed kinetic energy approach
smoothly to the nonrelativistic limit when the light velocit
c→`. It has also been shown by Stanton and Havriliak t
the calculated energy can fall below the exact energy by
amount of the order of 1/c4 but the error disappears as th
basis becomes complete. The imposition of kinetic bala
condition on the small component also provides a better
havior of the energy functional for determining the orbita
and their energies.

In the SCF procedure, the integrals and the matrices
evaluated over the members of the basis set$fm% rather than
over the members of the set of solutions$c i% because the
atomic or molecular orbitals~solutions of SCF equations! are
not known until the calculation is complete. Since these t
sets of functions are related by

c i5 (
m51

N

Cm ifm , ~3.13!

the two-electron matrix element ofF ~the Hartree-Fock po-
tential term! in $f% basis can be written as

Ui j 5(
c

K f iccU 1

r 12
Uf jccL

[(
c

(
m

(
n

Cmc* CncK f ifmU 1

r 12
Uf jfnL , ~3.14!

which involves a two-index transformation. However, th
two-index transformation process can be easily avoided
evaluating theUi j matrix elements in a mixed basis, i.e.,
$f,c% basis. This is trivial, because the occupied orbitals c
be updated~like the density matrix! during the SCF iteration
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250 PRA 60CHAUDHURI, PANDA, DAS, MAHAPATRA, AND MUKHERJEE
and, therefore, the two-electron matrix eleme
^f iccu(1/r 12)uf jcc& can be directly computed at each iter
tion without invoking the two-index transformation.

IV. APPLICATIONS

We employ an uncontracted Gaussian basis that ran
from 15s12p10d ~for lithium! to 22s20p15d5 f ~for magne-
sium! for computing the ionization potentials of Li, Be, Na
and Mg through the coupled-cluster-based linear respo
theory.

Table I compares our CCLRT calculation of the valen

TABLE I. First and second ionization potential~in eV! of alkali-
earth metals.

Atom
Ionizing
orbital Koopmans’ IP MBPT~2! CCLRT Experimenta

Li 2s1/2 5.342 5.386 5.392 5.392
3s1/2 2.005 2.015 2.016 2.019
2p1/2 3.500 3.536 3.538 3.544
2p3/2 3.500 3.536 3.535 3.544

Na 3s1/2 4.954 5.105 5.138 5.139
4s1/2 1.906 1.938 1.941 1.948
3p1/2 2.979 3.025 3.049 3.037
3p3/2 2.977 3.022 3.043 3.035

aReference@33#.
t

es

se

ionization energies of Li, Be, Na, and Mg atoms with th
experiment and with other availableab initio works that
roughly consider the same number of active orbitals. Th
are a few interesting features that we would like to highlig
here. First of all, we find from Table I that the accuracy
the ionization potentials estimated through Koopmans’ th
rem ~KT! @32# and the second order MBPT decrease w
increasing atomic number. We also observed a similar tr
while computing the second order IP across the perio
table. In fact, this is quite expected because the second o
MBPT ~Möller-Plesset! inaccurately treats the electron co
relation which plays the most significant role in the estim
tion of the excited/ionized state energies. Since the num
of electrons increases down the group as well as across
periodic table~for neutral species!, the error in estimation of
correlation energy through the second order MBPT increa
and hence, the accuracy of calculated IP value decrea
However, we do not find any significant deviation in o
computed CCLRT IP value~see Table I, fourth column!, and
this is exactly what we expect from CCLRT formalism
Since the CCLRT-IP method~also CCLRT-EA! is formally
equivalent to the core-valence-extensive CC theory~an infi-
nite order version of MBPT!, it is expected that this metho
will correctly estimate the dynamical and nondynamic
electron correlation effect and, thereby, will provide the c
rect description of the excited state of interest and its ene

Table II presents the computed CCLRT shake-up s
energies~also called satellite state energies! of Be and Mg
atoms and compares with the experimental value~compiled
TABLE II. First ionization potential~in eV! of alkaline-earth metals.

Atom
Configuration

of the ionized state Koopmans’ IP MBPT~2! CCLRT Experimenta

Be 1s22s(93%) 8.417 8.982 9.319 9.322
1s24s(46%) 20.934 20.260
1s25s(41%)
1s23s(10%)
1s23s(62%) 24.371 23.637
1s25s(32%)
1s24s(50%) 25.852 25.109
1s23s(28%)
1s25s(19%)

1s2s2 (70%) 128.808 124.979 124.552
1s2s6s(13%)

Mg 1s22s22p63s(91%) 6.898 7.521 7.648 7.645
1s22s2p63s5s(53%) 16.924 16.300
1s22s2p63s6s(27%)
1s22s2p63s4s(15%)
1s22s2p63s4s(72%) 19.817 19.150
1s22s2p63s6s(27%)
1s22s2p63s5s(43%) 21.284 20.440
1s22s2p63s6s(42%)
1s22s2p63s4s(13%)
1s22s2p63s2 (21%) 102.890 97.940 99.549

1s22s22p1/22p3/2
4 3s2 (75%) 62.267 57.998 59.551

1s22s22p1/2
2 2p3/2

3 3s2 (67%) 61.955 56.948 58.533

aReference@33#.
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from the excited state energies of the ionized species!. Com-
pared to the valence ionization potentials, the shake-up s
energies are less accurate and are slightly overestima
Nevertheless, the satellite state energies are still in g
agreement with the experiment. These small but n
negligible discrepancies in the computation of satellite s
energies can be explained as follows: Unlike the vale
ionized states, the character of the shake-up states an
energy strongly depends upon the quality of the occupied
well as the virtual orbitals~to which an electron is being
promoted!. Therefore, we expect the use of extended ba
functions might improve the quality of the shake-up sta
and its energy.

We present the excitation energies of Li and Na compu
through CCLRT in Table III and compare with experimen
and second order MBPT calculations with this present ba
Table III demonstrates that both thes→s and s→p transi-
tion energies are accurately estimated by the CCL
method. Although the second order MBPT transition en
gies of lithium are more accurate than CCLRT, this agr
ment is most likely fortuitous, because the second orde
values are less accurate than the CCLRT. This conjectu

TABLE III. Excitation energies~in cm21) of alkali metals.

Atom Transition MBPT~2! CCLRT Experimenta

Li 2s1/2→3s1/2 27188 27223 27206
2s1/2→2p1/2 14915 14955 14903
2s1/2→2p3/2 14916 14964 14904

Na 2s1/2→3s1/2 25544 25782 25739
2s1/2→3p1/2 16783 16900 16956
2s1/2→3p3/2 16801 16849 16973

aReference@36#.
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also supported by the CCLRT transition energies of sodi
which are more accurate and consistent than second o
MBPT.

V. SUMMARY AND CONCLUDING REMARKS

In this article, we have developed and applied RCCLR
for computing ionization potentials. However, by proper
defining the excitation operatorWk

† , the CCLRT method in
its present form can also be used to compute the ene
difference of other types, viz., double-ionization potentia
~DIPs!, electron affinity, excitation energies, etc. As an illu
trative numerical application, we have computed the ioni
tion energies of Li, Be, Na, and Mg atoms and compa
with the experiment. A uniform and excellent agreeme
with the experiment indicates the power of this theo
Though CCLRT is a core-extensive theory, the one-vale
problem is a special case where CCLRT is formally equi
lent to core-valence extensive multireference CC theory. U
like MRCC, the energy difference calculation throug
CCLRT proceeds via the diagonalization of a nonsymme
matrix, and, hence the convergence problem~which arises
due to the presence of the intruder states! does not appea
here. Unless an out of core diagonalization scheme is in
duced, the CCLRT method may suffer from computation
inefficiencies.
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