1,375 research outputs found
Charged Particle Motion in a Highly Ionized Plasma
A recently introduced method utilizing dimensional continuation is employed
to compute the energy loss rate for a non-relativistic particle moving through
a highly ionized plasma. No restriction is made on the charge, mass, or speed
of this particle. It is, however, assumed that the plasma is not strongly
coupled in the sense that the dimensionless plasma coupling parameter
g=e^2\kappa_D/ 4\pi T is small, where \kappa_D is the Debye wave number of the
plasma. To leading and next-to-leading order in this coupling, dE/dx is of the
generic form g^2 \ln[C g^2]. The precise numerical coefficient out in front of
the logarithm is well known. We compute the constant C under the logarithm
exactly for arbitrary particle speeds. Our exact results differ from
approximations given in the literature. The differences are in the range of 20%
for cases relevant to inertial confinement fusion experiments. The same method
is also employed to compute the rate of momentum loss for a projectile moving
in a plasma, and the rate at which two plasmas at different temperatures come
into thermal equilibrium. Again these calculations are done precisely to the
order given above. The loss rates of energy and momentum uniquely define a
Fokker-Planck equation that describes particle motion in the plasma. The
coefficients determined in this way are thus well-defined, contain no arbitrary
parameters or cutoffs, and are accurate to the order described. This
Fokker-Planck equation describes the longitudinal straggling and the transverse
diffusion of a beam of particles. It should be emphasized that our work does
not involve a model, but rather it is a precisely defined evaluation of the
leading terms in a well-defined perturbation theory.Comment: Comments: Published in Phys. Rep. 410/4 (2005) 237; RevTeX, 111
Pages, 17 Figures; Transcription error corrected in temperature equilibration
rate (3.61) and (12.44) which replaces \gamma-2 by \gamma-
Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter
An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters
Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter
An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions
An experimental study of the sensitivity of helicopter rotor blade tracking to root pitch adjustment in hover
The sensitivity of blade tracking in hover to variations in root pitch was examined for two rotor configurations. Tests were conducted using a four bladed articulated rotor mounted on the NASA-Army aeroelastic rotor experimental system (ARES). Two rotor configurations were tested: one consisting of a blade set with flexible fiberglass spars and one with stiffer (by a factor of five in flapwise and torsional stiffnesses) aluminum spars. Both blade sets were identical in planform and airfoil distribution and were untwisted. The two configurations were ballasted to the same Lock number so that a direct comparison of the tracking sensitivity to a gross change in blade stiffness could be made. Experimental results show no large differences between the two sets of blades in the sensitivity of the blade tracking to root pitch adjustments. However, a measurable reduction in intrack coning of the fiberglass spar blades with respect to the aluminum blades is noted at higher rotor thrust conditions
Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors
An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems
- …
