7,284 research outputs found
Axially Symmetric Solutions for SU(2) Yang-Mills Theory
By casting the Yang-Mills-Higgs equations of an SU(2) theory in the form of
the Ernst equations of general relativity, it is shown how the known exact
solutions of general relativity can be used to give similiar solutions for
Yang-Mills theory. Thus all the known exact solutions of general relativity
with axial symmetry (e.g. the Kerr metric, the Tomimatsu-Sato metric) have
Yang-Mills equivalents. In this paper we only examine in detail the Kerr-like
solution. It will be seen that this solution has surfaces where the gauge and
scalar fields become infinite, which correspond to the infinite redshift
surfaces of the normal Kerr solution. It is speculated that this feature may be
connected with the confinement mechanism since any particle which carries an
SU(2) color charge would tend to become trapped once it passes these surfaces.
Unlike the Kerr solution, our solution apparently does not have any intrinsic
angular momentum, but rather appears to give the non-Abelian field
configuration associated with concentric shells of color charge.Comment: 15 pages LaTe
The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity
The general relativistic infinite plane
Uniform fields are one of the simplest and most pedagogically useful examples
in introductory courses on electrostatics or Newtonian gravity. In general
relativity there have been several proposals as to what constitutes a uniform
field. In this article we examine two metrics that can be considered the
general relativistic version of the infinite plane with finite mass per unit
area. The first metric is the 4D version of the 5D "brane" world models which
are the starting point for many current research papers. The second case is the
cosmological domain wall metric. We examine to what extent these different
metrics match or deviate from our Newtonian intuition about the gravitational
field of an infinite plane. These solutions provide the beginning student in
general relativity both computational practice and conceptual insight into
Einstein's field equations. In addition they do this by introducing the student
to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic
Standing gravitational waves from domain walls
We construct a plane symmetric, standing gravitational wave for a domain wall
plus a massless scalar field. The scalar field can be associated with a fluid
which has the properties of `stiff' matter, i.e. matter in which the speed of
sound equals the speed of light. Although domain walls are observationally
ruled out in the present era the solution has interesting features which might
shed light on the character of exact non-linear wave solutions to Einstein's
equations. Additionally this solution may act as a template for higher
dimensional 'brane-world' model standing waves.Comment: 4 pages two-column format, no figures, added discussion of physical
meaning of solution, added refernces, to be published PR
Subtleties in the quasi-classical calculation of Hawking radiation
he quasi-classical method of deriving Hawking radiation is investigated. In
order to recover the original Hawking temperature one must take into account a
previously ignored contribution coming from the temporal part of the action.
This contribution plus a contribution coming from the spatial part of the
action gives the correct temperature.Comment: 6 pages revtex. Honorable Mention in 2008 GRF essay contest, typos
fixed, sign errors corrected. To be published in Special Issue of IJMP
The angular dependent magnetoresistance in alpha-(BEDT-TTF)_2KHg(SCN)_4
In spite of extensive experimental studies of the angular dependent
magnetoresistance (ADMR) of the low temperature phase (LTP) of
alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains
elusive. Here we present a new study of ADMR of LTP in alpha-(ET)_2 salts
assuming that LTP is unconventional charge density wave (UCDW). In the presence
of magnetic field the quasiparticle spectrum in UCDW is quantized, which gives
rise to striking ADMR in UCDW. The present model appears to account for many
existing ADMR data of alpha-(BEDT-TTF)_2KHg(SCN)_4 remarkably well.Comment: 6 pages, 4 figure
- …
