11 research outputs found

    Machine Learning Techniques for Quantification of Knee Segmentation from MRI

    Get PDF
    © 2020 Sujeet More et al. Magnetic resonance imaging (MRI) is precise and efficient for interpreting the soft and hard tissues. Moreover, for the detailed diagnosis of varied diseases such as knee rheumatoid arthritis (RA), segmentation of the knee magnetic resonance image is a challenging and complex task that has been explored broadly. However, the accuracy and reproducibility of segmentation approaches may require prior extraction of tissues from MR images. The advances in computational methods for segmentation are reliant on several parameters such as the complexity of the tissue, quality, and acquisition process involved. This review paper focuses and briefly describes the challenges faced by segmentation techniques from magnetic resonance images followed by an overview of diverse categories of segmentation approaches. The review paper also focuses on automatic approaches and semiautomatic approaches which are extensively used with performance metrics and sufficient achievement for clinical trial assistance. Furthermore, the results of different approaches related to MR sequences used to image the knee tissues and future aspects of the segmentation are discussed

    Allocation and migration of virtual machines using machine learning

    Get PDF
    Cloud computing promises the advent of a new era of service boosted by means of virtualization technology. The process of virtualization means creation of virtual infrastructure, devices, servers and computing resources needed to deploy an application smoothly. This extensively practiced technology involves selecting an efficient Virtual Machine (VM) to complete the task by transferring applications from Physical Machines (PM) to VM or from VM to VM. The whole process is very challenging not only in terms of computation but also in terms of energy and memory. This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres. Machine Learning (ML) based Artificial Bee Colony (ABC) is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter. The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy, applications are migrated from one VM to another. The simulation analysis is performed in Matlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies

    Handling class imbalance in online transaction fraud detection

    Get PDF
    With the rise of internet facilities, a greater number of people have started doing online transactions at an exponential rate in recent years as the online transaction system has eliminated the need of going to the bank physically for every transaction. However, the fraud cases have also increased causing the loss of money to the consumers. Hence, an effective fraud detection system is the need of the hour which can detect fraudulent transactions automatically in real-time. Generally, the genuine transactions are large in number than the fraudulent transactions which leads to the class imbalance problem. In this research work, an online transaction fraud detection system using deep learning has been proposed which can handle class imbalance problem by applying algorithm-level methods which modify the learning of the model to focus more on the minority class i.e., fraud transactions. A novel loss function named Weighted Hard- Reduced Focal Loss (WH-RFL) has been proposed which has achieved maximum fraud detection rate i.e., True Positive Rate (TPR) at the cost of misclassification of few genuine transactions as high TPR is preferred over a high True Negative Rate (TNR) in fraud detection system and same has been demonstrated using three publicly available imbalanced transactional datasets. Also, Thresholding has been applied to optimize the decision threshold using cross-validation to detect maximum number of frauds and it has been demonstrated by the experimental results that the selection of the right thresholding method with deep learning yields better results

    Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms : Principles and Perspectives

    Get PDF
    Funding Information: This work was supported in part by the National Research Foundation of Korea grant funded by the Korean Government, Ministry of Science and ICT, under Grant NRF-2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program.Peer reviewe

    Light Weight Authentication Scheme for Smart Home IoT Devices

    No full text
    In today’s world, the use of computer networks is everywhere, and to access the home network we use the Internet. IoT networks are the new range of these networks in which we try to connect different home appliances and try to give commands from a remote place. Access to any device over an insecure network invites various types of attacks. User authentication can be performed using some password or biometric technique. However, when it comes to authenticating a device, it becomes challenging to maintain data security over a secure network such as the Internet. Many encryptions and decryption algorithms assert confidentiality, and hash code or message authentication code MAC is used for authentication. Traditional cryptographic security methods are expensive in terms of computational resources such as memory, processing capacity, and power consumption. They are incompatible with the Internet of Things devices that have limited resources. Although automatic Device-to-Device communication enables new potential applications, the limited resources of the networks’ machines and devices impose various constraints. This paper proposes a home device authentication scheme when these are accessed from a remote place. An authentication device is used for the home network and controller device to control home appliances. Our scheme can prevent various attacks such as replay attacks, server spoofing, and man-in-the-middle attack. The proposed scheme maintains the confidentiality and authenticity of the user and devices in the network. At the same time, we check the system in a simulated environment, and the results show that the network’s performance does not degrade much in terms of delay, throughput, and energy consumed

    A comprehensive review on medical diagnosis using machine learning

    Get PDF
    The unavailability of sufficient information for proper diagnosis, incomplete or miscommunication between patient and the clinician, or among the healthcare professionals, delay or incorrect diagnosis, the fatigue of clinician, or even the high diagnostic complexity in limited time can lead to diagnostic errors. Diagnostic errors have adverse effects on the treatment of a patient. Unnecessary treatments increase the medical bills and deteriorate the health of a patient. Such diagnostic errors that harm the patient in various ways could be minimized using machine learning. Machine learning algorithms could be used to diagnose various diseases with high accuracy. The use of machine learning could assist the doctors in making decisions on time, and could also be used as a second opinion or supporting tool. This study aims to provide a comprehensive review of research articles published from the year 2015 to mid of the year 2020 that have used machine learning for diagnosis of various diseases. We present the various machine learning algorithms used over the years to diagnose various diseases. The results of this study show the distribution of machine learningmethods by medical disciplines. Based on our review, we present future research directions that could be used to conduct further research

    Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms

    No full text
    Fruit that has reached maturity is ready to be harvested. The prediction of fruit maturity and quality is important not only for farmers or the food industry but also for small retail stores and supermarkets where fruits are sold and purchased. Fruit maturity classification is the process by which fruits are classified according to their maturity in their life cycle. Nowadays, deep learning (DL) has been applied in many applications of smart agriculture such as water and soil management, crop planting, crop disease detection, weed removal, crop distribution, strong fruit counting, crop harvesting, and production forecasting. This study aims to find the best deep learning algorithms which can be used for the prediction of fruit maturity and quality for the shelf life of fruit. In this study, two datasets of banana fruit are used, where we create the first dataset, and the second dataset is taken from Kaggle, named Fruit 360. Our dataset contains 2100 images in 3 categories: ripe, unripe, and over-ripe, each of 700 images. An image augmentation technique is used to maximize the dataset size to 18,900. Convolutional neural networks (CNN) and AlexNet techniques are used for building the model for both datasets. The original dataset achieved an accuracy of 98.25% for the CNN model and 81.75% for the AlexNet model, while the augmented dataset achieved an accuracy of 99.36% for the CNN model and 99.44% for the AlexNet model. The Fruit 360 dataset achieved an accuracy of 81.96% for CNN and 81.75% for the AlexNet model. We concluded that for all three datasets of banana images, the proposed CNN model is the best suitable DL algorithm for bananas’ fruit maturity classification and quality detection

    Machine-Learning-Based Approach for Virtual Machine Allocation and Migration

    No full text
    Due to its ability to supply reliable, robust and scalable computational power, cloud computing is becoming increasingly popular in industry, government, and academia. High-speed networks connect both virtual and real machines in cloud computing data centres. The system’s dynamic provisioning environment depends on the requirements of end-user computer resources. Hence, the operational costs of a particular data center are relatively high. To meet service level agreements (SLAs), it is essential to assign an appropriate maximum number of resources. Virtualization is a fundamental technology used in cloud computing. It assists cloud providers to manage data centre resources effectively, and, hence, improves resource usage by creating several virtualmachine (VM) instances. Furthermore, VMs can be dynamically integrated into a few physical nodes based on current resource requirements using live migration, while meeting SLAs. As a result, unoptimised and inefficient VM consolidation can reduce performance when an application is exposed to varying workloads. This paper introduces a new machine-learning-based approach for dynamically integrating VMs based on adaptive predictions of usage thresholds to achieve acceptable service level agreement (SLAs) standards. Dynamic data was generated during runtime to validate the efficiency of the proposed technique compared with other machine learning algorithms

    Fuzzy Logic Systems for Diagnosis of Renal Cancer

    No full text
    Renal cancer is a serious and common type of cancer affecting old ages. The growth of such type of cancer can be stopped by detecting it before it reaches advanced or end-stage. Hence, renal cancer must be identified and diagnosed in the initial stages. In this research paper, an intelligent medical diagnostic system to diagnose renal cancer is developed by using fuzzy and neuro-fuzzy techniques. Essentially, for a fuzzy inference system, two layers are used. The first layer gives the output about whether the patient is having renal cancer or not. Similarly, the second layer detects the current stage of suffering patients. While in the development of a medical diagnostic system by using a neuro-fuzzy technique, the Gaussian membership functions are used for all the input variables considered for the diagnosis. In this paper, the comparison between the performance of developed systems has been done by taking some suitable parameters. The results obtained from this comparison study show that the intelligent medical system developed by using a neuro-fuzzy model gives the more precise and accurate results than existing systems
    corecore