42 research outputs found

    Imaging radar investigations of the Sudbury structure

    Get PDF
    This paper reports preliminary results of airborne imaging radar studies of the Sudbury structure carried out in preparation for a CCRS European Remote Sensing Satellite (ERS-1) investigation. The data used were synthetic aperture radar (SAR) C-band (5.66 cm) images acquired from about 6 km altitude in 1987. They cover the Sudbury area in both wide and narrow swath modes, with east-west flight paths and north-south illumination directions. Narrow swath resolution is 6 m in range and azimuth; wide swath resolution is 20 m in range and 10 m in azimuth. The STAR imagery has proven highly effective for field use, providing excellent rendition of topography and topographically expressed structure. Reasons for this include the illumination geometry, notably the look azimuth normal to the long axis of the Sudbury structure and Penokean fold axes, the good spatial resolution, and the short wavelength. Forested areas in the Sudbury area tend to be uniformly rough at C-band wavelength, with backscatter dominated by local incidence angle (i.e., topography). Field work using the SAR imagery has to date been concentrated in the North Range and Superior Province as far north as the Benny greenstone belt. This area was chosen for initial investigation of the original size and shape of the Sudbury structure because the effects of the Penokean Orogeny were minimal there. Field work using SAR indicates that there has been little postimpact deformation of the North Range or adjacent Superior Province rock. There appears to be no evidence for an outer ring concentric with the North Range as indicated by early Landsat imagery. The apparent ring shown by Landsat is visible on the SAR imagery as the intersection of two regional fracture patterns not related to the Sudbury structure. There is no outer ring visible southwest of the structure. This can reasonably be explained by Penokean deformation, but there is no outer ring to the northeast cutting the relatively undeformed Huronian sediments of the Cobalt Embayment
    corecore