5,729 research outputs found

    Computational simulation for concurrent engineering of aerospace propulsion systems

    Get PDF
    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined

    Superkritična fluidna ekstrakcija lovastatina dobivenog fermentacijom na čvrstoj podlozi od pšeničnih mekinja

    Get PDF
    The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2). A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF) on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.Svrha je ovoga rada bila izdvojiti lovastatin što veće čistoće pomoću superkritičnog ugljikova dioksida (SC-CO2). Lovastatin je proizveden fermentacijom na čvrstoj podlozi od pšeničnih mekinja s pomoću soja Aspergillus terreus UV 1617. Organskim otapalima ekstrahirani su lovastatin i njegov kiselinski oblik, pa je utvrđeno da je najučinkovitija ekstrakcija acetonitrilom. Da bi se izdvojio lovastatin iz fermentirane suhe tvari, upotrijebljen je superkritični ugljikov dioksid, pri čemu je ispitan utjecaj količine otapala upotrijebljenog za predobradu in situ, temperature, tlaka, brzine protoka superkritičnog otapala i vremena kontakta. Maksimalna količina lovastatina izdvojena je nakon predobrade 1,5 g čvrste podloge in situ s 1,5 mL metanola i 155 minuta ekstrakcije pri brzini protoka superkritičnog otapala od 2 L/min, temperaturi od 50 ºC i tlaku od 300 bara. Optimiranjem uvjeta superkritične fluidne ekstrakcije postignuta je, u usporedbi s klasičnim postupkom ekstrakcije otapalom, peterostruko veća HPLC čistoća lovastatina

    Multi-disciplinary coupling effects for integrated design of propulsion systems

    Get PDF
    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator

    Infrared horizon sensor modeling for attitude determination and control: Analysis and mission experience

    Get PDF
    The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ

    Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    Get PDF
    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies

    Analysis of physical-chemical processes governing SSME internal fluid flows

    Get PDF
    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated
    corecore