12 research outputs found

    Alexander Disease: Demonstration on Neuroimaging

    Get PDF

    Repetitive transcranial magnetic stimulation (rTMS) as therapy in an infant with epilepsia partialis continua

    No full text
    Introduction: We present a case of a 10-month-old girl undergoing repetitive TMS (rTMS) for the treatment of drug-resistant epilepsy. Case report: A 10-month-old girl, later diagnosed with pathogenic POLG1 mutations, presented to our institution with chronic progressive EPC (epilepsia partialis continua) manifesting as a frequent, left-sided, synchronous continuous jerking of the arms and legs. The seizures were drug-resistant to multiple antiseizure medications and epilepsy surgery, responding only to continuous anesthesia. rTMS therapy was attempted to interrupt seizures. Results: rTMS therapy, using an activating protocol to introduce a temporary lesion effect, was used to interrupt persistent, ongoing seizures. Conclusion: rTMS can be safely used to abort seizures in patients as young as 10 months old

    Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy.

    No full text
    Responsive neurostimulation for epilepsy involves an implanted device that delivers direct electrical brain stimulation in response to detection of incipient seizures. Responsive neurostimulation is a safe and effective treatment for adults with drug-resistant epilepsy, but although novel treatments are critically needed for younger patients, responsive neurostimulation is currently not approved for children with drug-resistant epilepsy. Here, we report a 16-year-old patient with seizures arising from eloquent cortex, who was successfully treated with responsive neurostimulation. This case highlights the potential utility of this therapy for pediatric patients and underscores the need for larger studies

    Longitudinal analysis of regional brain changes in anti-NMDAR encephalitis: a case report.

    No full text
    BackgroundAnti-NMDA receptor encephalitis is an immune-mediated disorder characterized by antibodies against the GluN1 subunit of the NMDA receptor that is increasingly recognized as a treatable cause of childhood epileptic encephalopathy. In adults, the disorder has been associated with reversible changes in brain volume over the course of treatment and recovery, but in children, little is known about its time course and associated imaging manifestations.Case presentationA previously healthy 20-month-old boy presented with first-time unprovoked seizures, dysautonomia, and dyskinesia. Paraneoplastic workup was negative, but CSF was positive for anti-NMDAR antibodies. The patient's clinical condition waxed and waned over a 14-month course of treatment with first- and second-line immunotherapies (including steroids, IVIG, rituximab, and cyclophosphamide). Serial brain MRIs scans obtained at 5 time points spanning this same period showed no abnormal signal or enhancement but were remarkable for cycles of reversible regional cortical volume loss. All scans included identical 1-mm resolution 3D T1-weighted sequences obtained on the same 3 T scanner. Using a novel longitudinal processing stream in FreeSurfer6 (Reuter M, et. al, Neuroimage 61:1402-18, 2012) we quantified the rate of change in cortical volume at each vertex (% volume change per month) between consecutive scans and correlated these changes with the time course of the patient's treatment and clinical response. We found regionally specific changes in cortical volume (up to 7% per month) that preferentially affected the frontal and occipital lobes and paralleled the patient's clinical course, with clinical decline associated with volume loss and clinical improvement associated with volume gain.ConclusionsOur results suggest that reversible cortical volume loss in anti-NMDA encephalitis has a regional specificity that mirrors many of the clinical symptoms associated with the disorder and tracks the dynamics of disease severity over time. This case illustrates how quantitative morphometric techniques can be applied to clinical imaging data to reveal patterns of brain change that may provide insight into disease pathophysiology. More widespread application of this approach might reveal regional and temporal patterns specific to different types of autoimmune encephalitis, providing a tool for diagnosis and a surrogate marker for monitoring treatment response

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system

    No full text
    Objective: Common data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data-driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy. Methods: A multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types. Results: Common data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic-clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center. Significance: We created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy

    Comparative Effectiveness of Initial Treatment for Infantile Spasms in a Contemporary US Cohort

    No full text
    ObjectiveTo compare the effectiveness of initial treatment for infantile spasms.MethodsThe National Infantile Spasms Consortium prospectively followed up children with new-onset infantile spasms that began at age 2 to 24 months at 23 US centers (2012-2018). Freedom from treatment failure at 60 days required no second treatment for infantile spasms and no clinical spasms after 30 days of treatment initiation. We managed treatment selection bias with propensity score weighting and within-center correlation with generalized estimating equations.ResultsFreedom from treatment failure rates were as follows: adrenocorticotropic hormone (ACTH) 88 of 190 (46%), oral steroids 42 of 95 (44%), vigabatrin 32 of 87 (37%), and nonstandard therapy 4 of 51 (8%). Changing from oral steroids to ACTH was not estimated to affect response (observed 44% estimated to change to 44% [95% confidence interval 34%-54%]). Changing from nonstandard therapy to ACTH would improve response from 8% to 39% (17%-67%), and changing to oral steroids would improve response from 8% to 38% (15%-68%). There were large but not statistically significant estimated effects of changing from vigabatrin to ACTH (29% to 42% [15%-75%]), from vigabatrin to oral steroids (29% to 42% [28%-57%]), and from nonstandard therapy to vigabatrin (8% to 20% [6%-50%]). Among children treated with vigabatrin, those with tuberous sclerosis complex (TSC) responded more often than others (62% vs 29%; p < 0.05).DiscussionCompared to nonstandard therapy, ACTH and oral steroids are superior for initial treatment of infantile spasms. The estimated effectiveness of vigabatrin is between that of ACTH/oral steroids and nonstandard therapy, although the sample was underpowered for statistical confidence. When used, vigabatrin worked best for TSC.Classification of evidenceThis study provides Class III evidence that for children with new-onset infantile spasms, ACTH or oral steroids were superior to nonstandard therapies

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system.

    No full text
    ObjectiveCommon data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data‐driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy.MethodsA multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types.ResultsCommon data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic‐clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center.SignificanceWe created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/1/epi16733.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/2/epi16733_am.pd
    corecore