28 research outputs found
Role of trauma and infection in childhood hemorrhagic stroke due to vascular lesions.
ObjectiveTrauma and infection have been postulated as "triggers" for hemorrhage from underlying brain vascular lesions (arteriovenous malformations, cavernous malformations, and aneurysms) in pediatric hemorrhagic stroke. We decided to perform an association study examining these environmental risk factors.MethodsIn this case-control study nested within the cohort of 2.3 million children enrolled in a Northern California integrated health plan (1993-2004), we identified childhood hemorrhagic stroke cases through electronic searches of diagnostic and radiology databases, confirmed through chart review. Three age- and facility-matched controls per case were randomly selected from the study population. Exposure variables were measured using medical records documented before stroke diagnosis. Main outcome measure was hemorrhagic stroke.ResultsOf 132 childhood, non-neonatal hemorrhagic stroke cases, 65 had underlying vascular lesions: 34 arteriovenous malformations, 16 cavernous malformations, and 15 aneurysms. A documented exposure to head and neck trauma in the prior 12 weeks was present in 3 cases (4.6%) with underlying vascular lesions, compared with no controls (p < 0.015). However, all 3 vascular lesions were aneurysms, and traumatic pseudoaneurysms were possible. Recent minor infection (prior 4 weeks) was present in 5 cases (7.7%) and 9 controls (4.6%) (p = 0.34).ConclusionsOur observed association between trauma and hemorrhagic stroke with a vascular lesion may be explained by traumatic pseudoaneurysms. Neither recent head or neck trauma nor infection appeared to be a "trigger" for pediatric hemorrhagic stroke due to underlying vascular malformations
Continuous Spike-Wave during Slow Wave Sleep and Related Conditions
Continuous spike and wave during slow wave sleep (CSWS) is an epileptic encephalopathy that presents with neurocognitive regression and clinical seizures, and that demonstrates an electroencephalogram (EEG) pattern of electrical status epilepticus during sleep, as defined by the Commission on Classification and Terminology of the International League Against Epilepsy 1989. CSWS is an age-related condition, typically presenting in children around 5 years of age, with clinical seizures which progress within 2 years to a severe epileptic encephalopathy. The pathophysiology of CSWS is not completely understood, but the corticothalamic neuronal network involved in sleep patterns is thought to be involved. Genetic predisposition and injury in early development are thought to play etiological roles. Treatment strategies have involved traditional anticonvulsants, hormonal therapies, and other newer techniques. Outcomes are fair, and the thought is that earlier diagnosis and intervention preserve neurocognitive development, as in the case of other epileptic encephalopathies. Further understanding of the mechanisms of CSWS may lead to improved therapeutic options and thus outcomes of children with CSWS
Repetitive transcranial magnetic stimulation (rTMS) as therapy in an infant with epilepsia partialis continua
Introduction: We present a case of a 10-month-old girl undergoing repetitive TMS (rTMS) for the treatment of drug-resistant epilepsy. Case report: A 10-month-old girl, later diagnosed with pathogenic POLG1 mutations, presented to our institution with chronic progressive EPC (epilepsia partialis continua) manifesting as a frequent, left-sided, synchronous continuous jerking of the arms and legs. The seizures were drug-resistant to multiple antiseizure medications and epilepsy surgery, responding only to continuous anesthesia. rTMS therapy was attempted to interrupt seizures. Results: rTMS therapy, using an activating protocol to introduce a temporary lesion effect, was used to interrupt persistent, ongoing seizures. Conclusion: rTMS can be safely used to abort seizures in patients as young as 10 months old
Recommended from our members
SLC35A2â CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals
Pathogenic de novo variants in the Xâ linked gene SLC35A2 encoding the major Golgiâ localized UDPâ galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2â congenital disorders of glycosylation (CDG; formerly CDGâ IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin Nâ glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2â CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2â dependent UDPâ galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wildâ type to mutant alleles in fibroblasts from affected individuals.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/1/humu23731_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/2/humu23731-sup-0001-Supp_Mat__2019.2.10_.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150498/3/humu23731.pd
Continuous Spike-Wave during Slow Wave Sleep and Related Conditions.
Continuous spike and wave during slow wave sleep (CSWS) is an epileptic encephalopathy that presents with neurocognitive regression and clinical seizures, and that demonstrates an electroencephalogram (EEG) pattern of electrical status epilepticus during sleep, as defined by the Commission on Classification and Terminology of the International League Against Epilepsy 1989. CSWS is an age-related condition, typically presenting in children around 5 years of age, with clinical seizures which progress within 2 years to a severe epileptic encephalopathy. The pathophysiology of CSWS is not completely understood, but the corticothalamic neuronal network involved in sleep patterns is thought to be involved. Genetic predisposition and injury in early development are thought to play etiological roles. Treatment strategies have involved traditional anticonvulsants, hormonal therapies, and other newer techniques. Outcomes are fair, and the thought is that earlier diagnosis and intervention preserve neurocognitive development, as in the case of other epileptic encephalopathies. Further understanding of the mechanisms of CSWS may lead to improved therapeutic options and thus outcomes of children with CSWS