4 research outputs found

    Pigeonpea nutrition and its improvement

    Get PDF
    Pigeonpea (Cajanus cajan [L.] Millsp.), known by several vernacular and names such as red gram, tuar, Angola pea. yellow dhal and oil dhal, is one of the major grain legume crops of the tropics and sub-tropics. It is a crop of small holder dryland fmmers because it can grow well under subsistence level of agriculture and provides nutritive food, fodder, and fuel wood. It also improves soil by fixing atmospheric nitrogen. India by far is the largest pigeonpea producer it is consumed as decorticated split peas, popularly called as 'dhaL' In other countries, its consumption as whole dty and green vegetable is popular. Its foliage is used as fodder and milling by-products [onn an excellent feed for domestic animals. Pigeonpea seeds contain about 20-22% protein and appreciable amounts of essential amino.acids and minerals. DehuHing and boiling treatments of seeds get rid of the most antinutritional factors as tannins and enzyme inhibitors. Seed storage causes considerable losses in the quality of this legume. The seed protein of pigeonpea has been successfully enhanced by breeding from 20-22% to 28-30%. Such lines also agronomically performed well and have acceptable and color. The high-protein lines were found nutritionally superior to the cultivars because they would provide more quantities of utilizable protein and sulfur-containing amino acids

    Bioethanol synthesis for fuel or beverages from the processing of agri-food by-products and natural biomass using economical and purposely modified biocatalytic systems

    No full text
    This review describes the role of suitable and modified microorganisms as economical biocatalysts in the processing of by-products generated in industries and agriculture, which are cheaply available globally as renewable resources. Since the microbial processing can be economically used to produce a variety of value-added products, by employing specific species of microorganisms as biocatalysts; but to be specific to the title of this review the information included in this article has only emphasized on one important consumer-product bioethanol. The conclusion of the information gathered in this review is that, the selection and modification of a microbial biocatalyst should be strategically done. For example: employing an yeast strain of Saccharomyces or a non-Saccharomyces culture, is important in bioethanol synthesis; the optimisation of biocatalyst is also important according to the type of material being processed in the system as it could be a by-product or waste residue of agriculture, food & beverage industry or simply the seasonal locally available fruits. The other information, which has been included in this review, is on the modification of biocatalysts and important factors influencing the efficiency of bioprocessing, for the necessity of economical yield of bioethanol

    Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges

    No full text
    corecore