15 research outputs found
Recommended from our members
Prognostic relevance of surface expression of cytokine receptor-like factor 2 in pediatric B-lineage acute lymphoblastic leukemia.
Overexpression of cytokine receptor-like factor 2 (CRLF2) resulting from its genomic rearrangement is the most frequent genetic alteration found in Philadelphia chromosome-like (Ph-like) B-cell acute lymphoblastic leukemia (B-ALL), a high-risk leukemia. Detection of CRLF2 expression by multiparameter flow cytometry has been proposed as a screening tool for the identification of Ph-like B-ALL. However, the prognostic relevance of flow cytometric expression of CRLF2 in pediatric B-ALL is not very clear. Additionally, its association with common copy number alterations (CNA) has not been studied in detail. Hence, in this study, we prospectively evaluated the flow cytometric expression of CRLF2 in 256 pediatric B-ALL patients and determined its association with molecular features such as common CNAs detected using Multiplex ligation-dependent probe amplification and mutations in CRLF2, JAK2 and IL7RA genes. Further, its association with clinicopathological features including patient outcome was assessed. We found that 8.59% (22/256) pediatric B-ALL patients were CRLF2-positive at diagnosis. Among CNAs, CRLF2 positivity was associated with presence of PAX5 alteration (P=0.041). JAK2 and IL-7R mutations were found in 9% and 13.6% CRLF2-positive patients, respectively. IGH::CRLF2 or P2RY8::CRLF2 fusions were each found in 1/22 individuals. CRLF2-positive patients were found to have inferior overall (hazard ratio (HR) =4.39, P=0.006) and event free survival (HR=2.62, P=0.045), independent to other clinical features. Furthermore, concomitant CNA of IKZF1 in CRLF2 positive patients was associated with a greater hazard for poor overall and event free survival, compared to patients without these alterations or presence of any one of them. Our findings demonstrate that the surface CRLF2 expression in association with IKZF1 copy number alteration can be used to risk stratify pediatric B-ALL patients