21 research outputs found

    Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor

    Full text link
    Natural killer (NK) cellâ based immunotherapy is a promising strategy for cancer treatment, and caspaseâ 3 is an important effector molecule in NK cellâ mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cellâ based immunotherapy by serial noninvasive imaging of apoptosis using a caspaseâ 3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspaseâ 3 sensor as a surrogate marker for caspaseâ 3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54â CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a timeâ and effector numberâ dependent increase in bioluminescence imaging (BLI) activity of the caspaseâ 3 sensor in D54â CR cells in vitro. Caspaseâ 3 activation by NK92 treatment was blocked by Zâ VAD treatment in D54â CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspaseâ 3 activation in a doseâ and timeâ dependent manner in D54â CR tumorâ bearing mice but not in PBSâ treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92â treatment group but not in the PBSâ treatment group. These data suggest that noninvasive imaging of apoptosis with a caspaseâ 3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cellâ based immunotherapy.â Lee, H. W., Singh, T. D., Lee, S.â W., Ha, J.â H., Rehemtulla, A., Ahn, B.â C., Jeon, Y.â H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cellâ based immunotherapy in mice using in vivo apoptosis bioimaging with a caspaseâ 3 sensor. FASEB J. 28, 2932â 2941 (2014). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154541/1/fsb2fj13243014.pd

    Application of Bio-Active Elastin-like Polypeptide on Regulation of Human Mesenchymal Stem Cell Behavior

    No full text
    Regenerative medicine using stem cells offers promising strategies for treating a variety of degenerative diseases. Regulation of stem cell behavior and rejuvenate senescence are required for stem cells to be clinically effective. The extracellular matrix (ECM) components have a significant impact on the stem cell’s function and fate mimicking the local environment to maintain cells or generate a distinct phenotype. Here, human elastin-like polypeptide-based ECM-mimic biopolymer was designed by incorporating various cell-adhesion ligands, such as RGD and YIGSR. The significant effects of bioactive fusion ELPs named R-ELP, Y-ELP, and RY-ELP were analyzed for human bone-marrow-derived stem cell adhesion, proliferation, maintenance of stemness properties, and differentiation. Multivalent presentation of variable cell-adhesive ligands on RY-ELP polymers indeed promote efficient cell attachment and proliferation of human fibroblast cells dose-dependently. Similarly, surface modified with RY-ELP promoted strong mesenchymal stem cell (MSCs) attachment with greater focal adhesion (FA) complex formation at 6 h post-incubation. The rate of cell proliferation, migration, population doubling time, and collagen I deposition were significantly enhanced in the presence of RY-ELP compared with other fusion ELPs. Together, the expression of multipotent markers and differentiation capacity of MSCs remained unaffected, clearly demonstrating that stemness properties of MSCs were well preserved when cultured on a RY-ELP-modified surface. Hence, bioactive RY-ELP offers an anchorage support system and effectively induces stimulatory response to support stem cell proliferation

    An Inverse Agonist of Estrogen-Related Receptor Gamma, GSK5182, Enhances Na<sup>+</sup>/I<sup>−</sup> Symporter Function in Radioiodine-Refractory Papillary Thyroid Cancer Cells

    No full text
    Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I−) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells

    Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging

    Get PDF
    We sought to visualize the migration of tumor-associated macrophages (TAMs) to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc) and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM) were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI) and fluorescence imaging (FLI) was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX), a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression

    Multimodality Imaging of Bone Marrow–Derived Dendritic Cell Migration and Antitumor Immunity

    No full text
    Here, we sought to monitor bone marrow–derived dendritic cell (BMDC) migration and antitumor effects using a multimodal reporter imaging strategy in living mice. BMDCs were transduced with retroviral vector harboring human sodium iodide symporter (hNIS, nuclear imaging reporter), firefly luc2 (optical imaging reporter), and thy1.1 (surrogate marker of NIS and luc2) genes (BMDC/NF cells). No significant differences in biological functions, including cell proliferation, antigen uptake, phenotype expression, and migration ability, were observed between BMDC and BMDC/NF cells. Combined bioluminescence imaging and I-124 positron emission tomography/computed tomography clearly revealed the migration of BMDC/NF cells to draining popliteal lymph nodes at day 7 postinjection. Interestingly, marked tumor protection was observed in mice immunized with TC-1 lysate-pulsed BMDC/NF cells. Our findings suggested that multimodal reporter gene imaging of NIS and luciferase could provide insights into the biological behaviors of dendritic cells in living organisms and could be a useful tool for the optimization of DC-based immunotherapy protocols

    Construction and Application of Elastin Like Polypeptide Containing IL-4 Receptor Targeting Peptide

    Get PDF
    <div><p>Various human solid tumors highly express IL-4 receptors which amplify the expression of some of anti-apoptotic proteins, preventing drug-induced cancer cell death. Thus, IL-4 receptor targeted drug delivery can possibly increase the therapeutic efficacy in cancer treatment. Macromolecular carriers with multivalent targeting moieties offered great advantages in cancer therapy as they not only increase the plasma half-life of the drug but also allow delivery of therapeutic drugs to the cancer cells with higher specificity, minimizing the deleterious effects of the drug on normal cells. In this study we designed a library of elastin like polypeptide (ELP) polymers containing tumor targeting AP1 peptide using recursive directional ligation method. AP1 was previously discovered as an atherosclerotic plaque and breast tumor tissue homing peptide using phage display screening method, and it can selectively bind to the interleukin 4 receptor (IL-4R). The fluorescently labeled [AP1-V<sub>12</sub>]<sub>6</sub>, an ELP polymer containing six AP1 enhanced tumor-specific targeting ability and uptake efficiency in H226 and MDA-MB-231 cancer cell lines <i>in vitro</i>. Surface plasmon resonance analysis showed that multivalent presentation of the targeting ligand in the ELP polymer increased the binding affinity towards IL-4 receptor compared to free peptide. The binding of [AP1-V<sub>12</sub>]<sub>6</sub> to cancer cells was remarkably reduced when IL-4 receptors were blocked by antibody against IL-4 receptor further confirmed its binding. Importantly, the Cy5.5-labeled [AP1-V<sub>12</sub>]<sub>6</sub> demonstrated excellent homing and longer retention in tumor tissues in MDA-MB-231 xenograft mouse model. Immunohistological studies of tumor tissues further validated the targeting efficiency of [AP1-V<sub>12</sub>]<sub>6</sub> to tumor tissue. These results indicate that designed [AP1-V<sub>12</sub>]<sub>6</sub> can serve as a novel carrier for selective delivery of therapeutic drugs to tumors.</p></div

    Determination of binding kinetics.

    No full text
    <p><sub>on</sub>), dissociation (k<sub>off</sub>) and equilibrium (K<sub>D</sub>) constants of [AP1-V<sub>12</sub>]<sub>6</sub> and AP1 peptide from kinetic fits obtained from Scrubber 2. The data ±SD obtained for three independent experiments (n = 3).<sup></sup> Association (k</p

    Monomer genes of V<sub>14</sub> and AP1-V<sub>12</sub>.

    No full text
    <p>(A) [VGVPG]<sub>14</sub> and (B) VGRKRLDRNG[VGVPG]<sub>12</sub> monomeric genes and their corresponding polypeptide sequences.</p
    corecore