40 research outputs found

    Effect of seeding density on suppression of weeds and performance of wheat (Triticum aestivum)

    Get PDF
    An on-farm trial was conducted at five farmer’s field of Banswara district of Rajasthan to validate, refine and popularize the technology developed by Maharana Pratap University of Agriculture and Technology, Udaipur for managing weed flora in wheat (Triticum aestivum L emend. Fiori & Paol) during 2010-11 to 2011-12. Results showed that the seeding density has positive correlation on suppression of weed population. Seeding density over 150 kg/ha significantly suppressed the weed floras. Due to lower weed population and higher yield contributing components under 150 kg/ha seeding density gave 20.8%, 1.4% and 33% more grain yield over 125 and 175 kg/ha and farmer’s practice respectively. The highest net return, B:C ratio, energy output, energy use efficiency, energy productivity and sustainability yield index (SYI) were also recorded with 150 kg/ha seeding density. It can be recommended that 150 kg/ha seeding density of wheat is sufficient to get maximum return in southern Rajasthan and Central Malwa Plateau region. With this intervention tribal farmers of the southern Rajasthan can reduce their cost of production and save energy as well

    Elucidating the interactive impact of tillage, residue retention and system intensification on pearl millet yield stability and biofortification under rainfed agro-ecosystems

    Get PDF
    Micronutrient malnutrition and suboptimal yields pose significant challenges in rainfed cropping systems worldwide. To address these issues, the implementation of climate-smart management strategies such as conservation agriculture (CA) and system intensification of millet cropping systems is crucial. In this study, we investigated the effects of different system intensification options, residue management, and contrasting tillage practices on pearl millet yield stability, biofortification, and the fatty acid profile of the pearl millet. ZT systems with intercropping of legumes (cluster bean, cowpea, and chickpea) significantly increased productivity (7–12.5%), micronutrient biofortification [Fe (12.5%), Zn (4.9–12.2%), Mn (3.1–6.7%), and Cu (8.3–16.7%)], protein content (2.2–9.9%), oil content (1.3%), and fatty acid profile of pearl millet grains compared to conventional tillage (CT)-based systems with sole cropping. The interactive effect of tillage, residue retention, and system intensification analyzed using GGE statistical analysis revealed that the best combination for achieving stable yields and micronutrient fortification was residue retention in both (wet and dry) seasons coupled with a ZT pearl millet + cowpea–mustard (both with and without barley intercropping) system. In conclusion, ZT combined with residue recycling and legume intercropping can be recommended as an effective approach to achieve stable yield levels and enhance the biofortification of pearl millet in rainfed agroecosystems of South Asia

    Sequential herbicide application coupled with mulch enhances the productivity and quality of winter onion (Allium cepa L.) while effectively controlling the mixed weed flora

    Get PDF
    Weed control poses substantial difficulties for winter season onion (Allium cepa L.) cultivation in the north-western Indo-Gangetic Plains, primarily due to the constrained efficacy of the existing herbicides. To address this issue, a 2-year field study was conducted to assess the efficacy of pre- and post-emergence herbicides (pendimethalin, ethoxysulfuron, imazethapyr, and quizalofop-p-ethyl) individually and in combination with crop residue mulch for weed control in winter onion. The results revealed that using herbicides or mulches in isolation did not provide satisfactory weed control. However, the integration of natural mulch with pendimethalin followed by quizalofop-p-ethyl application proved to be the most effective weed control strategy, resulting in the least reduction in bulb yield (10.3%) compared to other treatments. On the contrary, combinations of pendimethalin with ethoxysulfuron or imazethapyr showed adverse effects on the onion crop and inflicted the highest yield losses among all treatments (78.6 and 83.4%, respectively). However, the combination of pendimethalin with quizalofop-p-ethyl coupled with crop mulch resulted in season-long weed control and over 80% bulb yield (36.58 t/ha) gains compared to the weed-free condition. These findings emphasize the efficacy of combining herbicides and mulches as an integrated weed management strategy for onions. By adopting such integrated approaches, farmers could improve weed control while maintaining bulb yield and quality, reducing the risks associated with herbicide resistance, and promoting sustainable onion production in the north-western Indo-Gangetic Plains

    Weed dynamics, wheat (Triticum aestivum) yield and irrigation water-use efficiency under conservation agriculture

    Get PDF
    A field experiment was conducted to evaluate the impacts of a 12-year old conservation agriculture (CA)- based pigeon pea-wheat system on weeds, wheat crop, and resource use during winter (rabi) 2021–22. Results indicated that surface retention of residue irrespective of ZT permanent bed and N dose led to significant reduction in weed interference at 60 DAS. CA-based systems reduced weed density and dry weight considerably than CT. CA- based systems led to significantly higher wheat grain yield (by 11.6–14.9%) and net B:C (by 24.0 –28.0%) than CT, and PFBR100N and PBBR100N were slightly superior to others. PBBR100N and PBBR75N had lower irrigation water use and significantly higher irrigation water productivity than CT. Contrast analysis showed that wheat yield and water productivity were comparable between 75% N and 100% N in CA, indicating a saving of 25% N under CA

    Sensor-based precision nutrient and irrigation management enhances the physiological performance, water productivity, and yield of soybean under system of crop intensification

    Get PDF
    Sensor-based decision tools provide a quick assessment of nutritional and physiological health status of crop, thereby enhancing the crop productivity. Therefore, a 2-year field study was undertaken with precision nutrient and irrigation management under system of crop intensification (SCI) to understand the applicability of sensor-based decision tools in improving the physiological performance, water productivity, and seed yield of soybean crop. The experiment consisted of three irrigation regimes [I1: standard flood irrigation at 50% depletion of available soil moisture (DASM) (FI), I2: sprinkler irrigation at 80% ETC (crop evapo-transpiration) (Spr 80% ETC), and I3: sprinkler irrigation at 60% ETC (Spr 60% ETC)] assigned in main plots, with five precision nutrient management (PNM) practices{PNM1-[SCI protocol], PNM2-[RDF, recommended dose of fertilizer: basal dose incorporated (50% N, full dose of P and K)], PNM3-[RDF: basal dose point placement (BDP) (50% N, full dose of P and K)], PNM4-[75% RDF: BDP (50% N, full dose of P and K)] and PNM5-[50% RDF: BDP (50% N, full P and K)]} assigned in sub-plots using a split-plot design with three replications. The remaining 50% N was top-dressed through SPAD assistance for all the PNM practices. Results showed that the adoption of Spr 80% ETC resulted in an increment of 25.6%, 17.6%, 35.4%, and 17.5% in net-photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci), respectively, over FI. Among PNM plots, adoption of PNM3 resulted in a significant (p=0.05) improvement in photosynthetic characters like Pn (15.69 µ mol CO2 m−2 s−1), Tr (7.03 m mol H2O m−2 s−1), Gs (0.175 µmol CO2 mol−1 year−1), and Ci (271.7 mol H2O m2 s−1). Enhancement in SPAD (27% and 30%) and normalized difference vegetation index (NDVI) (42% and 52%) values were observed with nitrogen (N) top dressing through SPAD-guided nutrient management, helped enhance crop growth indices, coupled with better dry matter partitioning and interception of sunlight. Canopy temperature depression (CTD) in soybean reduced by 3.09–4.66°C due to adoption of sprinkler irrigation. Likewise, Spr 60% ETc recorded highest irrigation water productivity (1.08 kg ha−1 m−3). However, economic water productivity (27.5 INR ha−1 m−3) and water-use efficiency (7.6 kg ha−1 mm−1 day−1) of soybean got enhanced under Spr 80% ETc over conventional cultivation. Multiple correlation and PCA showed a positive correlation between physiological, growth, and yield parameters of soybean. Concurrently, the adoption of Spr 80% ETC with PNM3 recorded significantly higher grain yield (2.63 t ha−1) and biological yield (8.37 t ha−1) over other combinations. Thus, the performance of SCI protocols under sprinkler irrigation was found to be superior over conventional practices. Hence, integrating SCI with sensor-based precision nutrient and irrigation management could be a viable option for enhancing the crop productivity and enhance the resource-use efficiency in soybean under similar agro-ecological regions

    Secure NIfTI Image Authentication Scheme for Modern Healthcare System

    No full text
    Advances in digital neuroimaging technologies, i.e., MRI and CT scan technology, have radically changed illness diagnosis in the global healthcare system. Digital imaging technologies produce NIfTI images after scanning the patient’s body. COVID-19 spared on a worldwide effort to detect the lung infection. CT scans have been performed on billions of COVID-19 patients in recent years, resulting in a massive amount of NIfTI images being produced and communicated over the internet for diagnosis. The dissemination of these medical photographs over the internet has resulted in a significant problem for the healthcare system to maintain its integrity, protect its intellectual property rights, and address other ethical considerations. Another significant issue is how radiologists recognize tempered medical images, sometimes leading to the wrong diagnosis. Thus, the healthcare system requires a robust and reliable watermarking method for these images. Several image watermarking approaches for .jpg, .dcm, .png, .bmp, and other image formats have been developed, but no substantial contribution to NIfTI images (.nii format) has been made. This research suggests a hybrid watermarking method for NIfTI images that employs Slantlet Transform (SLT), Lifting Wavelet Transform (LWT), and Arnold Cat Map. The suggested technique performed well against various attacks. Compared to earlier approaches, the results show that this method is more robust and invisible

    Inhibition of Urea-N with the Seeds of Naturally Occurring Plants:A Green House Study

    No full text
    165-167Losses due to urea-N can be minimized by applying it with seeds of naturally occurring pl ants, having high carbon content, which are easily available near the farmer's field. In the present study, seeds of six plants i.e. Amaltash, Karanj , Jamun, Nagchampa, Ashoka and Neem were mixed with urea in the ratio of 1:5 and applied to the paddy crop. It was observed that these mixtures enhanced the production of dry matter, straw and grain by 21-30% and the residual nitrogen got immobilized. It was made available to the next crop through the microorganisms

    Effect of some Heterocyclic Synthetic Nitrogen Regulators for Increasing the Efficacy of Urea in Paddy-wheat Crop Rotation

    No full text
    98-101In developing countries urea is the major source of nitrogen, but it is a matter of concern that one-third of urea (30-35%) is only utilized by the plants and the rest two-third (65-70%) is lost by volatilization, denitrification, leaching and absorbed in lower profiles of the soil. Due to this farmers suffer a great economic loss and have to face the polluted environment and contaminated water. This wasteful loss of nitrogen can be controlled to a certain extent by application of some heterocyclic nitrogen regulators like pyrazoles and isoxazoles. The isoxazole regulators can control urea hydrolysis and denitrification, and increase N-uptake and apparent N-recovery by formation of nitrogen complexes in soil which can be easily adsorbed by growing plants. The present investigation was carried out in a IARI farm soil (Typic Haplustept) and urea fortified with different synthetic isoxazole compounds for N-regulation. The study indicated that the test regulators (at 5% of the fertilizer level) significantly retarded the nitrification of soil applied urea. In vitro studies have revealed that whereas 75% soil applied urea-N got converted to nitrate-N within a week's time, the use of test chemicals delayed the urea transformation for 10-14 days to achieve the same level of nitrate-N. These regulators not only increased the dry matter yield by 20-25% over control, but their application along with fertilizer also increased the apparent -N recovery by 20-40% in both paddy and wheat crops. The use of these chemicals was not detrimental to soil health. These nitrification regulators retarded the conversion of ammoniacal-N to nitrate-N without accumulation of nitrite-N, which is supposed to be toxic to the plants

    Energy Balance, Productivity and Resource-Use Efficiency of Diverse Sustainable Intensification Options of Rainfed Lowland Rice Systems under Different Fertility Scenarios

    No full text
    Rice-based cropping systems (RBCS) are a kingpin of global food security and rice fallow is one of the largest (>14 m ha) RBCS. A three-year study was carried out to develop sustainable intensification options and efficient nutrient management protocols of RBCS with greater water and energy productivity and more profits. Rice-lentil, rice-linseed and rice-rapeseed systems were tested in a split-plot design with nutrient management practices involving fertilizer levels (50%, 75% and 100% recommended fertilizer dose; RDF), green manuring with Sesbania (SGM) and rice residue incorporation (RRI). The results indicated that SGM produced significantly better rice productivity, enhanced 6.4–22.7% yield of succeeding crops and increased profits by ~20%. Application of 75 or 100% of RDF produced 24.5–30.3% higher grain yield of rabi crops. System intensification resulted in an additional rice equivalent yield (REY) of ~1–1.6 t ha−1. SGM consumed relatively more energy (76,793 MJ ha−1) but at the same time, resulted in higher energy output (182,657 MJ ha−1), net energy (105,864 MJ ha−1), energy intensity (1.68 MJ INR−1) and human energy profitability (787) than the RRI. However, RRI recorded a higher energy ratio (2.42), energy productivity (0.082 kg MJ−1) and energy profitability (1.42 kg MJ−1). The rice-linseed cropping system resulted in greater system productivity, higher energy output (186,305 MJ ha−1) and net energy (112,029 MJ ha−1) than other systems. Overall, considering energy productivity, resource-use efficiency and profits, a rice-linseed system coupled with SGM and 75% RDF may be recommended as a sustainable intensification option in RBCS

    Modeling of Diffusive Patterns in Predator–Prey System using Turing Instability and Amplitude Equations

    Get PDF
    In this work, we have investigated the evolution of diffusive pattern formation in a predator–prey model under type-III functional response. Using stability analysis, we receive the significant specifications for Turing instability (diffusive-driven instability), and with the help of these conditions, recognize the corresponding realm in the region of interest. Moreover, we present a qualitative analysis of growth and development actions that involves species distribution and their interplay of the spatially distributed populace with diffusion and obtain the conditions for spatial patterns like spots, spot-stripe, and stripes. Using weakly nonlinear analysis, we derive the equations of amplitude for slow modulation near the Turing boundary. By the series of numerical simulations, we receive intricate spatial patterns, particularly spot, stripe, and spot-stripe in the Turing realm. The consequences of this paper are general in the real world and can be used to investigate the impact of self-diffusion on other predator–prey systems. It will improve our understanding to understand the dynamical behavior of realistic models
    corecore