2 research outputs found
Image and Information Fusion Experiments with a Software-Defined Multi-Spectral Imaging System for Aviation and Marine Sensor Networks
The availability of Internet, line-of-sight and satellite identification and surveillance information as well as low-power, low-cost embedded systems-on-a-chip and a wide range of visible to long-wave infrared cameras prompted Embry Riddle Aeronautical University to collaborate with the University of Alaska Arctic Domain Awareness Center (ADAC) in summer 2016 to prototype a camera system we call the SDMSI (Software-Defined Multi-spectral Imager). The concept for the camera system from the start has been to build a sensor node that is drop-in-place for simple roof, marine, pole-mount, or buoy-mounts. After several years of component testing, the integrated SDMSI is now being tested, first on a roof-mount at Embry Riddle Prescott. The roof-mount testing demonstrates simple installation for the high spatial, temporal and spectral resolution SDMSI. The goal is to define and develop software and systems technology to complement satellite remote sensing and human monitoring of key resources such as drones, aircraft and marine vessels in and around airports, roadways, marine ports and other critical infrastructure. The SDMSI was installed at Embry Riddle Prescott in fall 2016 and continuous recording of long-wave infrared and visible images have been assessed manually and compared to salient object detection to automatically record only frames containing objects of interest (e.g. aircraft and drones). It is imagined that ultimately users of the SDMSI can pair with it via wireless to browse salient images. Further, both ADS-B (Automatic Dependent Surveillance-Broadcast) and S-AIS (Satellite Automatic Identification System) data are envisioned to be used by the SDMSI to form expectations for observing in future tests. This paper presents the preliminary results of several experiments and compares human review with smart image processing in terms of the receiver-operator characteristic. The system design and software are open architecture, such that other researchers are encouraged to construct and participate in sharing results and networking identical or improved versions of the SDMSI for safety, security and drop-in-place scientific image sensor networking
Software Defined Multi-Spectral Imaging for Arctic Sensor Networks
Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop-in-place installations in the Arctic. The prototype selected will be field tested in Alaska in the summer of 2016