191 research outputs found

    PRISM-Based Theory of Complex Coacervation: Excluded Volume versus Chain Correlation

    Get PDF
    Aqueous solutions of oppositely charged polyelectrolytes can undergo liquid–liquid phase separation into materials known as complex coacervates. These coacervates have been a subject of intense experimental and theoretical interest. Efforts to provide a physical description of complex coacervates have led to a number of theories that qualitatively (and sometimes quantitatively) agree with experimental data. However, this agreement often occurs in a degeneracy of models with profoundly different starting assumptions and different levels of sophistication. Theoretical difficulties in these systems are similar to those in most polyelectrolyte systems where charged species are highly correlated. These highly correlated systems can be described using liquid state (LS) integral equation theories, which surpass mean-field theories by providing information on local charge ordering. We extend these ideas to complex coacervate systems using PRISM-type theories and are able to capture effects not observable in traditional coacervate models, particularly connectivity and excluded volume effects. We can thus bridge two traditional but incommensurate theories meant to describe complex coacervates: the Voorn–Overbeek theory and counterion release. Importantly, we hypothesize that a cancellation of connectivity and excluded volume effects provides an explanation for the ability of Voorn–Overbeek theory to fit experimental data despite its well-known approximations

    Systems and methods for detecting molecular interactions using magnetic beads

    Get PDF
    Systems and methods are provided for detecting or measuring binding affinity between different compositions. The methods include contacting one or more magnetic beads having a surface including a first composition with a substrate having a surface including a second composition; applying a rotating magnetic field to the one or more magnetic beads effective to cause the one or more magnetic beads to move across the surface of the substrate; measuring the movement of the one or more magnetic beads across the substrate surface to determine a translational velocity; and determining a binding affinity between the first and second compositions from the translational velocity

    Smoking and reverse cholesterol transport: evidence for gene-environment interaction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66077/1/j.1399-0004.1989.tb03201.x.pd

    Self-Consistent Hopping Theory of Activated Relaxation and Diffusion of Dilute Penetrants in Dense Crosslinked Polymer Networks

    Full text link
    We generalize and apply a microscopic force-level statistical mechanical theory of the activated dynamics of dilute spherical penetrants in glass-forming liquids to study the influence of permanent crosslinking in polymer networks on the penetrant relaxation time and diffusivity over a wide range of temperature and crosslink density. Calculations are performed for model parameters relevant to recent experimental studies of an nm-sized organic molecule diffusing in crosslinked PnBA networks. The theory predicts the penetrant alpha relaxation time increases exponentially with the crosslink fraction (fnf_n) dependent glass transition temperature, TgT_g, which grows roughly linearly with the square root of fnf_n. Moreover, TgT_g is also found to be proportional to a geometric confinement parameter defined as the ratio of the penetrant diameter to the mean network mesh size. The decoupling ratio of the penetrant to polymer Kuhn segment alpha relaxation times displays a complex non-monotonic dependence on crosslink density and temperature that can be well collapsed based on the variable Tg(fn)/TT_g(f_n)/T. The microscopic mechanism for activated penetrant relaxation is elucidated and a model for the penetrant diffusion constant that combines activated segmental dynamics and entropic mesh confinement is proposed which results in a significantly stronger suppression of mass transport with degree of effective supercooling than predicted for the penetrant alpha time. This behavior corresponds to a new polymer network-based type of decoupling of diffusion and relaxation. In contrast to the diffusion of larger nanoparticles in high temperature rubbery networks, our analysis in the deeply supercooled regime suggests that for the penetrants studied the mesh confinement effects are of secondary importance relative to the consequences of crosslink-induced slowing down of glassy activated relaxation.Comment: 42 pages and 14 figure

    Von Willlebrand Adhesion to Surfaces at High Shear Rates Is Controlled by Long-Lived Bonds

    Get PDF
    Von Willebrand factor (vWF) adsorbs and immobilizes platelets at sites of injury under high-shear-rate conditions. It has been recently demonstrated that single vWF molecules only adsorb significantly to collagen above a threshold shear, and here we explain such counterintuitive behavior using a coarse-grained simulation and a phenomenological theory. We find that shear-induced adsorption only occurs if the vWF-surface bonds are slip-resistant such that force-induced unbinding is suppressed, which occurs in many biological bonds (i.e., catch bonds). Our results quantitatively match experimental observations and may be important to understand the activation and mechanical regulation of vWF activity during blood clotting
    • …
    corecore