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Abstract

Aqueous solutions of oppositely-charged polyelectrolytes can undergo liquid-liquid

phase separation into materials known as complex coacervates. These coacervates have

been a subject of intense experimental and theoretical interest. Efforts to provide a

physical description of complex coacervates have led to a number of theories that qual-

itatively (and sometimes quantitatively) agree with experimental data. However, this

agreement often occurs in a degeneracy of models with profoundly different starting as-

sumptions and different levels of sophistication. Theoretical difficulties in these systems

are similar to those in most polyelectrolyte systems where charged species are highly

correlated. These highly-correlated systems can be described using Liquid State (LS)

integral equation theories, which surpass mean field theories by providing information
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on local charge ordering. We extend these ideas to complex coacervate systems us-

ing PRISM-type theories, and are able to capture effects not observable in traditional

coacervate models, particularly connectivity and excluded volume effects. We can thus

bridge two traditional but incommensurate theories meant to describe complex coacer-

vates: the Voorn-Overbeek theory and counterion release. Importantly, we hypothesize

that a cancellation of connectivity and excluded volume effects provides an explanation

for the ability of Voorn-Overbeek theory to fit experimental data despite its well-known

approximations.

Introduction

Complex coacervates are a long-studied class of materials that are typically formed from

more than one oppositely charged species.1–3 By definition, the opposite charge on the two

species results in a ‘complex.’ Furthermore, the nature of the charged species must allow

for the formation of a ‘coacervate’, which represents a subset of complexes that undergo

a liquid-liquid phase separation rather than forming solid precipitates.1–6 Historical and

current investigations into complex coacervates have studied the formation of such phases

in natural polymers, such as proteins or polysaccharides, which are currently widely used

as food additives.7–18 Despite the utility of these systems, there has only recently been a

resurgence of interest in their molecular behavior, in particular for its promise as a powerful

route to self-assembled materials such as micelles,3,19–22 block copolymers,23–26 and layer-by-

layer assembly.27–30 This recent activity in the field is concomitant with a desire to emulate

the molecular features observed in a number of biological materials, such as underwater

adhesives in mussels and the matrix adhesive holding together the dwelling of a sandcastle

worm.2,31–33 The novelty of these materials is their extreme stability (yet responsiveness) with

respect to environmental ionic conditions, even at high salt concentrations, as well as their

reversible assembly behavior.34–38 Complex coacervates are used for microencapsulation, drug

delivery,3,19 biomaterials,39–41 and underwater adhesives,2,31,32 where their self assembly and
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functionality relies19,23–26 on the relationship between charged species. Thus, the molecular

features of these charged species is crucial to designing function. Theoretical work should

correspondingly relate to these molecular features in a fashion that permits their design.

While complex coacervate materials may be comprised of any number of component

types, such as colloids or folded proteins,42–46 we will primarily focus on flexible, charged

polymers. These systems typically have four non-water components, two oppositely-charged

polyions and two oppositely-charged salt ions.1 Polymeric complex coacervates demonstrate

a rich phenomenology that is a function of the presence of salt as well as the nature of the

charged polyions,1,32,34–38,47–50 with a vast parameter space that spans the molecular features

of all four components. Experimentalists have begun to systematically explore this space,

looking at effects such as chain solubility and length, ion identity, and valency.1,32,34–38,47–51

Nevertheless, a comprehensive physical picture of these systems remains to be elucidated.

These systems are conceptually portrayed in a variety of ways. Physical principles ranging

from counterion release,44,52–54 to electrostatic screening,7–9 to two-step models (and permu-

tations thereof)10,36,42 are all invoked to some degree of success, however there remains some

ambiguity over the physical nature of coacervation.

This ambiguity is compounded by the wide variety of theoretical models purporting to

describe complex coacervation. The initial picture, which prevails to most modern studies,

was established more than 50 years ago by Voorn and Overbeek.7,8 This eponymous theory

describes a competition between the mixing entropy and dispersive interactions of the poly-

mers, introduced via a Flory-Huggins term,55 and the electrostatic interaction between the

oppositely-charged polyions, introduced via a Debye-Hückel term.7,8,56 The free energy FV O

of a complex coacervate system of volume V at temperature T is given by:7,8

FV O
kBT

= V

[
φ±
N

lnφ± + (1− φ±) ln (1− φ±) + χφ±(1− φ±)− 2
√
π

3
Γ3/2φ

3/2
±

]
(1)

where φ± is the combined volume fraction of polyion with length N , and Γ = e2/(8πεakBT )
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is the parameter describing the magnitude of the electrostatic interaction in the electrolyte

solution with dielectric constant ε and salt ion size a. The incorporation of a polymer-solvent

χ parameter is a modification of the original theory,9 and can be relevant for synthetic

polymers that are inherently water-insoluble. Excellent agreement between experiment and

theory is possible,34 and extensions to (for example) adapt Cahn-Hilliard models of interfaces

can describe interfacial surface tension effects.57 However this theory carries with it the

approximations inherent to the linearized, mean field Debye-Hückel theory.56

Non-mean field behaviors are expected and experimentally realized in most real poly-

electrolyte systems,58–60 especially at the high salt concentrations prevalent in coacervate

systems.61,62 Extensions to rectify this have been proposed.62,63 The mean-field nature of

the Voorn-Overbeek model has been relaxed in both theory64 as well as elaborate numerical

theory by Fredrickson et al.66–68 In the latter, fluctuations are incorporated into both the

electrostatic as well as the polymer degrees of freedom using complex Langevin methods.66,67

In principle, such methods should be able to fully describe coacervate systems as they are

not restrained by the “mean field” assumptions that the Voorn-Overbeek theory carries with

it, and the Hamiltonian in these systems is essentially complete.66,67 In practice, however,

these theories require a finite-sized grid for numerical simulation, setting a “resolution” below

which it is difficult to articulate correlations.

Despite these significant advances, alternative models have been developed that rely

on different, often more phenomenological ideas. For example, simple arguments based on

“counterion release” have been successfully implemented both in theory and experiment.52–54

These rely on the presence of Manning condensation,69 which provides a local abundance of

salt charges near isolated polyions. Upon complexation between two polyions, these “bound”

or “condensed” counterions now are free to translate through the entire system.15,52,70 Such

arguments are fundamentally different from Voorn-Overbeek related models. Namely, they

require the presence of highly-connected charges (in the form of the polyions), which are

essentially absent in the original Voorn-Overbeek theory.7,8
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While fluctuating field methods are a significant improvement,66,67 and Random Phase

Approximation (RPA)-based theories have provided promising alternatives that surpass

Voorn-Overbeek to include correlation and excluded volume effects,71,72 there remains an

urgent need for new theoretical insight. Most importantly, there is a need to understand

how these two disparate theoretical approaches relate to each other. The Voorn-Overbeek

theory has shown excellent agreement with data,34,73 despite its well-known theoretical de-

ficiencies and disregard for the features that are the driving concepts in counterion-release

arguments.15 There is a need to understand this paradoxical state of the theory.

An alternative to Vorn-Overbeek or field theories is desired in order to clarify

the role of molecular details such as connectivity. One promising route is to use

liquid state theory. Liquid state (LS) theories are a powerful class of theories that

are capable of incorporating the features of highly-correlated systems, which are

challenging or intractable with mean-field approaches.74They are the standard

theoretical approach for liquids, and represent an alternative to prior approaches

to describe coacervates due to their ability to articulate correlations in systems

such as charged electrolyte and polyelectrolyte systems.74–78 In particular, LS

can often reproduce pair correlations at a quantitative level, typically evidenced

by comparing to full Molecular Dynamics simulations.74,75,79 Even in situations

where quantitative matching fails, qualitative features are typically observed.74,79

The calculation of these pair correlations provides the information needed to

determine macroscopic thermodynamic parameters such as energy, pressure, or

chemical potential.74

For polymeric systems, connectivity can be included via modifications to LS

theory, through an extension known as the Polymer Reference Interaction Site

Model (PRISM).80 This model introduces connected correlations, with each

monomer along the chain ‘observing’ neighbors as bonded in the same fash-

ion (i.e. a monomer far from a chain end will on average experience the same
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environment).77,80 For coacervate systems, this uniquely enables articulation of

local correlations with respect to molecular features such as connectivity while

providing the information to calculate macroscopic thermodynamics necessary to

understand phase behavior. There are disadvantages to PRISM, in particular it

typically requires a homogeneous, isotropic system and is often numerically chal-

lenging.74 Furthermore, it relies on non-exact ‘closure relations’ whose opaque

approximations are difficult to conceptualize and improve upon.74 PRISM is

nevertheless able to consider local connectivity and structure that is difficult

or intractable in prior methods, and for complex coacervates is able to provide

insights not apparent in field theory-based approaches.

In this paper, we develop a PRISM-based theory that provides an initial look at molecular-

level charge correlations in the context of complex coacervate phase behavior. We will probe

this model and demonstrate how two important and competing effects (excluded volume and

chain connectivity), which are neglected in the Voorn-Overbeek model,7,8 cancel out such

that the Voorn-Overbeek model seemingly produces excellent fits in regimes far outside its

theoretical applicability. This allows us to develop new predictions for measurable quantities

such as salt partitioning and chain connectivity effects on coacervate phase behavior. We

show how molecular features of either the polyions or the salt ions may be harnessed to

promote or prevent the formation of complex coacervates.

Theory

Recent advances in the theoretical description of polyelectrolyte materials in gels,62 blends,63,81

and block copolymers81,82 have succeeded in incorporating charge correlations into thermody-

namic models in a multiscale fashion. Importantly, these new theoretical tools enable the ar-

ticulation of molecular structure at the level of the so-called “primitive model” that considers

charged components as spherical beads. While this ostensibly neglects some atomistic-level
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features, the local organization of even these simplified charged species has been demon-

strated to have profound effects on the thermodynamics of materials.58–60,62,63,81,82 Many of

these systems maintain charge ordering due to the high strength of Coulombic attractions be-

tween opposite charges; in polymer blends and block copolymers this is due to an extremely

low relative dielectric constant εr < 10,63,81,82 and in single-polyelectrolyte solutions this is

due to highly-valent salts.59,60,62 For complex coacervates, we are often under conditions of

high dielectric constant (εr = 80.1) and low valency z ∼ ±1. Despite being in conditions

where (for unconnected charges) correlations often play a weak role, we will demonstrate

that the high connectivity of both polyion species can result in strong correlation effects.

To probe the hypothesis that molecular-level connectivity is important, we alter a previ-

ous approach of using LS theory to determine local structure in polyelectrolyte systems to

incorporate connectivity of the polyions using a PRISM model.62,63,80–82

We consider a system with four non-water species, as demonstrated in Figure 1. There are

two polymer species, each composed of a chain of charges with valency zP+ and zP−. Here,

we examine the simple case where the valencies are always set to zP± = 1. We only explicitly

render the charged moieties as finite-size beads (of size aP+ and aP−), and thus any uncharged

polymer link between the two is not explicitly considered as having excluded volume. This

chain volume is accounted for separately from the charge-based excluded volume (which

implicitly includes ion hydration) in a mean-field contribution described later. The charged

beads are spatially correlated at a fixed distance dP+ and dP− that sets the spacing between

charges. Each charged bead “sees” its neighbors along the chain up to the point at which

connectivity correlations are lost. This is effectively the persistence length of the chain, and

we approximate this by setting the limit of the connectivity correlations to a number nK

away from the original bead (on either side). This is conceptually like having “step function”

correlations, with anything less than nK away correlating like a rigid rod and anything more

than nK charged species away appearing uncorrelated via chain connectivity. We note that

this ’persistence length’ is not determined self-consistently, and could in a real system be
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affected by the charged components themselves as well as (for example) excluded volume.

The chains have an overall length, NP+ and NP−, however for the purposes of this work we

set NP+ = NP− → ∞. This simplifies the calculations, but does not drastically change the

results of this work. In principle it is possible to include variations in chain length N into

our studies. For this work we will also retain the assumption that all of the above properties

x = N, nK , etc. are such that xP+ = xP− = xP such that each polymer is the same except

for the charge. The same will be true for the ion species, with valencies z+ = z− = z± and

radii a+ = a− = a±. We could remove this assumption in this theoretical approach, and this

is an interesting area for further study. Nevertheless, we start by analyzing a small area of

what is an immense parameter space and maintain symmetry between the charged polymers.

The four species are in a given phase with number concentrations c+, c−, and cP (the

polymer concentration is given as charged monomers per volume). We will consider two

phases, shown in Figure 2; a polymer-rich phase α and a polymer-dilute phase β that serves as

a “bath” of constant chemical potential for the various components. We will therefore specify

the quantities associated with the various phases with the appropriate superscript, so for

example the concentration of cation in the α-phase will be given by cα+. For simplicity’s sake,

we assume that not only does electroneutrality exist in each phase in general but for both

the polymer and salt species independently. Therefore, z+cα+ = z−c
α
− and cαP,+ = cαP,− = cαP ,

along with the corresponding equations for the β-phase. This is not necessarily the case;

significant experimental work in the past has considered systems where the stoichiometry

of the two phases is not the same, either by the concentration of polymer or by adjusting

pH,12,13,32,34,35,47 leading to decreased stability of the coacervate phase. This represents

yet another area of parameter space that may be explored in the future using this model.

Nevertheless, if we assume that one of the phases (β) is infinitely dilute in polymer (which

is the case in the N → ∞ limit), then so long as the overall stoichiometry of polymer is

included in the overall system is electroneutral then this situation will be maintained in the

α phase. This will likewise dictate the same condition for the salt stoichiometry, so long as
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Figure 1: Schematic depiction of the components and their respective parameters for the
coacervate model used in this work. For most parameters (dP ,nK , a±, and aP ), symmetric
values will be used for both the polycations and polyanions as well as the cations and anions.
This is for the sake of limiting an otherwise large parameter space, while in practice these
parameters are not necessarily the same.
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Figure 2: Schematic depiction of a coacervate system considered, consisting of two phases.
The polymer-rich α phase contains all of the polyions (due to the infinite chain length) as
well as the salt species at a concentration cα± 6= cβ±. The polymer-deficient β phase contains
only the applied salt concentration cβ±.
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electroneutrality of the overall phases are assumed.

Upon assuming the presence of two phases, we can write the equilibrium conditions for

the four species:

z−µ
α
+(cα+, c

α
−, c

α
P ) + z+µ

α
−(cα+, c

α
−, c

α
P ) = z−µ

β
+(cβ+, c

β
−) + z+µ

β
−(cβ+, c

β
−) (2)

µαP (cα+, c
α
−, c

α
P ) = µβP (cβ+, c

β
−) (3)

This set of equations implicitly includes the electroneutrality condition due to the coupling

of the µ+ and µ− in Equation 2, and the infinite dilution of the β phase is implied given the

lack of a cβP argument in the µβ terms. It is typical to write the chemical potential of the

charged ions in the form:

µ± = µ±,0 + µ±,exc = kBT ln c± + µ±,exc (4)

This form separates the ideal gas contribution to the chemical potential µ±,0 from the excess

chemical potential contribution µ±,exc. The excess chemical potential µ±,exc describes the

effect of charge correlations. The equilibrium distribution of ions between the two phases α

and β will be:

cα−

cβ−
=
cα+

cβ+
= e(z−µ

α
+,exc+z+µ

α
−,exc)−(z−µ

β
+,exc+z+µ

β
−,exc) = λ(cβ+, c

β
−, c

α
P ) (5)

We use the variable λ to denote the ratio of salt in and out of the coacervate phase. This λ

is highly dependent on the concentration of salt that is in the polymer-deficient phase (cβ±)

and the concentration of polymer in the coacervate phase cαP . We set cβ± as a parameter of

the system. cαP will be determined self-consistently with µ±,exc and cα±, in conjunction with

the equilibrium condition on the polymer species (Equation 3).
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The chemical potential of the polymer component is:

µP = µP,0 + µP,exc = − ln (1− 2φP )− 4χφP + µP+,exc + µP−,exc (6)

where µP,0 = − ln (1− 2φP )−4χφP is the Flory-Huggins expression for the chemical potential

of the polymer in the limit of N →∞;55 this is essentially due to the mixing entropy of the

solvent and the short-range energetic penalty for polymer-solvent contacts. This latter term

is important if, for example, the backbone is hydrophobic.9 This is often the case for most

synthetic polymers, and can result in a strong enhancement of the stability of the coacervate.

For the purposes of this paper, we will consider only the athermal χ = 0.0 situation. The

dispersive contributions that χ is meant to represent will be strongly affected by the highly-

correlated structure of coacervates, making this a non-trivial contribution.83 φP = cPν0 is

the volume fraction of a given polymer species, and uses the monomer volume ν0. This

leads to a mean-field excluded volume associated with the uncharged polymer chain, and is

separate from the correlated excluded volume of the charged species. The above form of the

chemical potential can be used to write the equilibrium equation:

− ln (1− 2φP )− 4χφP = µαP+,exc + µαP−,exc − µ
β
P+,exc − µ

β
P−,exc = −∆µP (cβ+, c

β
−, λ, c

α
P ) (7)

where we have defined a ∆µP =
∑
µβP,exc−

∑
µαP,exc that is the difference in excess chemical

potential between the two phases. We have assumed that larger polymer-conformational

behaviors are not significant, which is in line with scattering results demonstrating Gaussian

chain behavior in the coacervate.84 The φP → 0 limit retains the classical Flory-Huggins

result n the absence of the correlation-based excess chemical potential.55 The terms in this

equation are a function of the concentration of the polymers as well as the salt concentration

(via the ∆µP term), and both equations share a common unknown cαP . Solving for this

yields the equilibrium concentration of the coacervate phase. There is always one solution

to these equations at cαP = 0, which is the trivial case that there is no coacervate formation;
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however, there is often a second set of conditions that fits these conditions that corresponds

to the formation of a coacervate phase for a given value of cβ+ and cβ−; this formation is an

equilibrium phase if the free energy is lower than the non-coacervate state.

This sets up the thermodynamic description of the system, which dictates the formation

or non-formation of a coacervate phase. The form of the µx,exc (where x = +,−, P ) remains

to be determined, however. For this we rely on Liquid State theory (LS) calculations that

account for the local geometry described at the beginning of this section.74 In particular, the

use of the Reference Interaction Site Model (RISM) or the related Polymer-RISM (PRISM)

model can provide the ideal combination of local order information and subsequently large-

scale thermodynamic parameters.74,80 This approach can provide an alternative to pertur-

bation theories; namely, while perturbation approaches tend to truncate a series expansion

at some finite term and cannot always converge,58 LS theories take these expansions to infi-

nite terms and then compare them to develop what are known as “closure relationships.” 74,80

These comparisons are typically not exact, however the resulting approximation is vastly dif-

ferent than a perturbation-type approximation.74 In situations where perturbation theories

tend to not converge (such as highly-correlated charged systems) the approximation is better

but nevertheless opaque - certain classes of “diagrams” are neglected, and an understanding

of the physical ramifications of this neglect is still poorly developed.58,74 Nevertheless, this

class of theories provides excellent and often-quantitative matching of structural information

to both simulation and experiment.74,80

The PRISM approach we take requires the iterative solution of two equations; the PRISM

formulation of the fundamental Ornstern-Zernicke (OZ) equation and the Debye-Hückel Ex-

tended Mean Spherical Approximation (DHEMSA) closure relationship that has been re-

cently developed.74,79,80 The PRISM version of the OZ equation is:

ĥij = ω̂ik · ĉD,kl · ω̂lj + clω̂ik · ĉD,kl · ĥlj (8)
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where hats denote Fourier-transformed values.74,80 The overall correlation between species i

and j is given by hij. This occurs either through a direct interaction, which is captured by

the direct correlation function cD,ij, or via an indirect interaction that is a convolution of

cD,ij and hij.74 Diagrammatic expansions of this equation are used as the starting point for

the development of LS theory,74 and the inclusion of the intramolecular correlation function

ωij includes the correlation information between sites on the same molecule. In PRISM

theory, this specifically expresses the molecular structure along the polymer backbone.74,80

The correlation functions cD,ij and hij are matrix quantities where each index can be any

one of the distinct species in the system. For our system, these correspond to the +,−, P+,

and P− species. For each pair of components i and j, there are now two unknowns: the

correlation functions cD,ij and hij. In order to determine these, we require a further closure

relationship linking the two values. For our system we use the DHEMSA closure relationship

developed by Zwanikken, et al..79 This is a piecewise definition of the various correlation

functions:79

hij(r) = −1.0 if r < 2a

cD,ij(r) = hDHij − ln (1 + hDHij )− βuij if r > 2a (9)

where − ln (1 + hDHij ) = ±βφ+++φHS sets a reference correlation function hDHij that is based

on the solution of the Poisson-Boltzmann equation in radial coordinates:79

β∇2φ++(r) = κ2 sinh βφ++(r) (10)

with the boundary conditions:79

(
∂φ++

∂r

)
r=2a

= − λB
4a2

(11)
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and (
∂φ++

∂r

)
r→∞

= 0 (12)

where λB is the Bjerrum length λB = e2/(4πεkBT ) and κ is the inverse Debye length κ =√
8πλBρ+.79 In this overall calculation, there are only a small number of inputs that are

needed: uij = λBz+z−/r is the potential between charges i and j, and the densities

ρx (x = ρ+, ρ−, ρP ) are determined by the overall thermodynamics. We refer the reader to

the paper by Zwanikken, et al. for a thorough discussion of the nature of this closure in

the non-PRISM context.79 In using PRISM, we must also dictate the behavior of ωij that

captures the intramolecular correlations. We approximate ωij with the expression for a rigid

rod:85

ω̂ij = δij + δijδiP

nK∑
l=1

2(nK − l)
nK

sin (lkdP )

lkdP
(13)

This expression treats each non-polymer species as a δ-function (such that there are appro-

priately no intramolecular correlations), while the polymer species are connected directly

to nK × 2 other polymers species of the same type. This approximates a semiflexible

polymer, where each monomer is connected to charges that are placed rigidly

nearby, however charges distant along the chain contour become uncorrelated.

nK thus sets the extent that this rigidity extends along the polyelectrolyte back-

bone. This simplified representation considers all chain segments to be in the middle of the

chain (its neighbors are always present), which is appropriate for the N → ∞ approxima-

tion we are making.80 Future improvements to the current method are possible if

the value of ω̂ij is rendered self-consistent with the correlations. This is often

accomplished via molecular simulation.77,85,86

We note that the use of the DHEMSA closure approximation in the scope of the PRISM

version of the OZ equation is an approximation; even though the PRISM equation in-

cludes connectivity, the closure relationship itself does not. This is known to be an

important feature of widely-used PRISM closures, in particular the Laria-Wu-
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Chandler (LWC) closure that is known to be effective for polyelectrolyte sys-

tems.75,76,78,88,89 We use the DHEMSA closure instead of the LWC, primarily

due to the ease with which DHEMSA converges over a wide array of polyelec-

trolyte and salt concentrations.79 Since we are interested in qualitative results,

and DHEMSA is known to be in excellent agreement with simulations outside

of PRISM,79 we do not expect drastically unrealistic results. However, the use of

more precise closure relationships represents an area for further refinement of the theory. In

order to understand the result of this method, we invoke the similarity between DHEMSA

results and those for the Hypernetted Chain (HNC) closure relationship. This is known to

be the case in most regimes of interest.79 We would like to, however, use this similarity to

permit us to use the HNC-based expression for the excess chemical potential:74

µi,exc
kBT

=
∑
j

cj
2

∫
hij [hij − cD,ij] dr− cj

∫
cD,ijdr (14)

By coupling the calculation of the complete set of correlation functions hij and cD,ij to the

values of µi,exc, we have a way of coupling the local information calculated via the PRISM

theory to a thermodynamic value that can be used in the thermodynamic calculation outlined

in the first part of this section.

Improvements to the formalism are possible; for example, the use of the DHEMSA with

PRISM may be evaluated in the future in comparison with simulation results,74 or the

LWC closure can be used instead of the DHEMSA closure.89 The use of the highly-

simplified hard rod version of ω̂ may be likewise reevaluated, where instead of an approximate

description of a semiflexible chain more accurate correlations are taken from simulation.77,86

Such investigations will permit a more thorough understanding of the role of chain flexibility.

Furthermore, the assumption ofN →∞may be relaxed in the future to deal with chains that

are relatively short. Nevertheless, we expect this method to provide a new glimpse into the

effects of local structure on the thermodynamics of complex coacervation that is orthogonal
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to many of the current methods considered in the literature. This method uniquely considers

the thermodynamics in a way that is related directly to local structure, while current models

have a difficult time (at best) in understanding these structural correlations.7,8,66,67,71,72 This

may even provide a glimpse into biologically-relevant binding behaviors where local charge

organization is implied by the precise placement of charged moieties on proteins.44

Results

Coacervate Structure

PRISM has the ability to articulate local charge structure in a fashion such that local cor-

relations are directly demonstrable. The results of the calculation can provide predictions

of the pair correlation function gij(r) = hij(r) + 1, which is between all of the species i

and j. Figure 3 demonstrates a characteristic pair correlation function for a system that

is both in the coacervate phase and in the dilute phase for a symmetric monovalent sys-

tem. For each system, there are six possible curves; polycation-cation, polyanion-cation,

cation-cation, cation-anion, polycation-polycation, and polyanion-polyanion (the opposite

combinations are the same so long as charged species are symmetric in valency and size).

Features of the correlation functions directly correspond to certain types of charge struc-

tures. In Figure 3, we can start to assign the peaks accordingly; we introduce a schematic in

Figure 3e that labels the relative locations between charged species and indicates the peaks

that are seen in the correlation functions in Figure 3b. The primary species are indicated

in bold colors, while lighter colors indicate the correlations via connectivity that has been

imposed via the PRISM calculation. This connectivity leads to a large amount of local

structure, with distant correlation peaks being prevalent even in the symmetric monovalent

case. These types of features, such as oscillatory behavior or connectivity-induced peaks,

are unrealizable with traditional Poisson-Boltzmann theory58 and typically require ad-hoc

theoretical approximations such as charge renormalization90 to enable a description of the
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thermodynamics. While these renormalization (or related) methods are often powerful, we

can reproduce the entire correlation behavior within the scope of the primitive model in a

fashion that requires far fewer assumptions about the system.

It is these correlations that characterize complex coacervation; there is a large set of

peaks that correspond to the abundance of oppositely-charge chains adjacent to each other

that are more pronounced than the oppositely-charged single ions peaks. This is due to

cooperativity; the connectivity of adjacent charges reduces the entropic penalty of bring-

ing two oppositely-charged monomers together if their adjacent charges are likewise next

to each other. This connectivity effect is particularly significant even at large salt concen-

trations cβ±, where there is little driving force for phase separation otherwise. Coacervates

are typically stable up to salt concentrations on the order of 1 − 5M,34–38,48 where the salt

charges alone take up ∼ 10% of the volume in the system rendering it a relatively dense sea

of ions. Associations between unconnected charged species rapidly decay in such systems

(Figure 3d, red and black curves). We demonstrate the connectivity effects in Figure 3a-d,

which demonstrates the correlation behavior as a function of salt concentration cβ±. As the

salt concentration increases, the cation-anion correlations decrease significantly. However,

the polycation-polyanion system maintains peaks that are associated with connectivity cor-

relations well beyond the correlation distances observed in their non-connected counterparts.

This drives the system towards polymer-dense states, since even at high salt concentration

connectivity increases the correlations between opposite charges.

Phase Behavior and Counterion Release

In order to evaluate the coupled sets of Equations 5 and 7, we set the unknown values cβ+,

cβ− to the desired external salt concentration. We can then set the value of cαP , and then

calculate a value of ∆µTOT given by the equation:

− ln (1− 2φ∗P )− 4χφ∗P + ∆µP (cβ+, c
β
−, λ, c

α,∗
P ) = ∆µTOT (cβ±, c

α,∗
P ) (15)
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Figure 3: (a-d) Correlation functions hij between each pair of components for aP = 0.2nm,
a± = 0.2nm, dP = 0.5nm, and nK = 6. We note that hij(r) is technically supposed to be
hij(r) > −1, and the DHEMSA closure provides unphysical values. The literature suggests
that even with this artifact, the calculation of quantities such as µj still provide reasonable
results due to their reliance on differences between h(r) values rather than absolute values
of h(r).79 We note that hij(r) = gij(r) + 1.0. (e) Dashed ovals and corresponding numbers
encircle prominent correlations that are observed in these calculations. They correspond to
similarly-colored arrows and numbers denoting peaks in (d). Brown-colored ovals (1-3) rep-
resent polymer-polymer correlations, blue ovals (4-6) represent polymer-ion correlations, and
the red oval (7) represents an ion-ion correlation. Strong colors are for nearby correlations,
while light colors are for distant correlations. Original charges along the polymer chain are
filled, while connected charges are open.
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where cα,∗P is a set value of cP that is not necessarily at equilibrium. Based on Equation 7,

equilibrium will be obtained when ∆µTOT = 0. The value of λ can be determined as if

the salt were in equilibrium, and thus for a given cα,∗P only the polymer volume fraction is

kept out of equilibrium while the distribution of charges λ equilibrates based on the given

constraints. This enables the calculation of an energy landscape via the integration of the

chemical potential difference ∆µTOT (cβ±, c
α,∗
P ):

f̃(cβ±, c
α
P ) =

∫ cαP

0

∆µ̃TOT (cβ±, c
α,∗
P )dcα,∗P (16)

where tildes represent normalization by thermal energy kBT . Physically, this represents

slowly increasing the polymer concentration in a coacervate phase that has salt in equilibrium

with a bath. In Figure 4a we plot a series of these free energy landscapes as a function of

the concentration cαP for a number of different values of cβ± and a monovalent salt. These

free energy curves at intermediate salt cβ± can have one of two minima. A minimum value

at cαP = 0 corresponds to a dilute solution that is resistant to coacervate formation, and in

Figure 4a this is observed for the c± = 0.18M curve. Alternatively, a minimum at cαP > 0

is a coacervate phase that is often lower in free energy and thus the observed state (for

example, the c± = 0.13M curve in Figure 4a). Usually, as salt cβ± is increased the free energy

landscape tilts up such that this coacervate phase is at a higher energy (however still a

local minimum). Ultimately, the local minimum itself becomes unstable. This free energy

landscape picture is characteristic of a first-order phase transition.91 We hypothesize that

the first-order transition (as opposed to a second order transition as is expected in mean field

theories)7,8,57 is conceptually related to the competition between local ordering of oppositely-

charged polyions and the cooperative electrostatic energy. Experimental data has shown

sharp transitions characteristic of first-order transitions,34 however it is unclear

that these are truly first-order. This aspect will require further interrogation,

both experimentally and theoretically.
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Figure 4: (a) Free energy landscapes show that at as the salt concentration is decreased a
free energy minimum occurs at finite polymer concentration. (b) Landscapes in (a) result in
the phase boundary for coacervation in the φP (percent volume occupied by polymer) versus
c± (salt concentration) plane. Coacervation occurs on the bottom left hand corner of the
graph. aP = 0.2nm, a± = 0.2nm, dP = 0.5nm, and nK = 6. Colored lines denote locations
of the corresponding free energy landscape for a number of different salt concentrations c±
as a function of log salt concentration log (φP ) plotted in (a).Black dots in (b) correspond
to locations where we will plot correlation functions in Figure 5.

With this free energy picture, we calculate in Figure 4b a phase diagram in the cβ±-cαP

space, which has been experimentally measured for a few systems.34 This shows the general

trend that increasing salt concentration c± leads to a decrease in the volume fraction of

polymer φP in the polymer-rich phase until the coacervate disappears (around c± = 0.17M

in the current example). Within the simple representation of the phase boundaries, we can

probe the local structure via the PRISM results used to generate the graph. We show this

in Figure 5, which plots in (a-c) the black points in Figure 4b and in (d-e) plots the β-phase

correlations for these same points. These correlation functions hij(r) demonstrate a tradeoff

between bound ions in the β-phase (bottom row) and strong oppositely-charged polyions in

the α-phase, suggesting interpretation via the counterion release mechanism of coacervation

formation.44,52 In particular, we emphasize the difference in the polyion-ion correlations

versus the ion-ion correlations for oppositely charged species. In the bottom row (β phase),

there is a significant abundance of ions next to the polyion compared to next to a salt ion,
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Figure 5: (a-c) Correlation functions h(r) for the black points in Figure 4b. (d-f) Correlation
functions for the corresponding β-phase equivalent to the α-phases in (a-c) respectively. We
note the important tradeoff in molecular features; The blue (+,P-) and green (+,P+) curves
are nearly indistinguishable from the red (+,-) and black curves (+,+) respectively in (a-c),
where the ions do not care whether they are near a polyion or an oppositely-charged salt ion.
Instead, strong correlations are primarily observed for the complexation between oppositely-
charged polyions (olive and magenta curves, P+,P+ and P+,P-). The blue and green curves
demonstrate a much stronger correlation effects than the red and black curves in (d-f); they
represent the strong ion correlations around a polyion monomer where opposite charges are
bound strongly (blue and green) when compared to the salt ions not near a polymer (red
and black). This represents the local structural manifestation of the “counterion release”
mechanism that leads to coacervate formation. We note that hij(r) = gij(r) + 1.0.
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which is indicative of counterion condensation. In the top row (α phase), there is very little

difference between these correlations, indicating that the salt ions do not distinguish between

salt and polyions (i.e. the counterions have been ‘released’). This theory therefore captures

the conceptual “counterion release” argument, representing one prevailing understanding of

coacervate formation.

The phase diagram in Figure 4b can be used to demonstrate trends due to experimentally

observable changes in the system. This initial case considers z− = z+ = 1, nK = 6, dP =

0.5nm, and a+ = a− = aP = 0.2nm, which means that all charged species are identical

in size and charge. This system will serve as the baseline for comparing the effects of

different parameters such as ion size, polymer connectivity, and polymer excluded volume.

These choices are motivated by typical values seen in experimental systems. For

example, this charge size a± is on the order of magnitude of the size of hydrated

ions in solution,81 and the choice of nK is consistent with a typical Kuhn length

for a semiflexible polymer.93

Relationship to Debye-Hückel theory

Beyond exhibiting the classical “counterion release” concepts, the theory developed in this

manuscript also reproduces Debye-Hückel theory in the appropriate limits. Specifically,

this limit should be retained upon (1) diluting the system, (2) decreasing the excluded

volume, and (3) removing connectivity of the charges. The second and third limits are

those previously discussed as representing the neglected assumptions of Debye-Hückel based

Voorn-Overbeek approaches.

The Voorn-Overbeek theory utilizes the electrostatic contribution to the chemical poten-

tial:

µP = µ± =
κλB

2(1 + κa)
(17)

into the aforementioned calculation (where we would use the PRISM theory results). We can
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Figure 6: In Voorn-Overbeek theory, the excess chemical potential µ± follows the black
curve (the Debye-Hückel, D-H result) as salt concentration c± is changed. The current
model approaches this behavior the limit of small a± and aP = 0.1nm (red curve). However,
µ± quickly moves away from this limiting result as charges are increased a± > 0.1nm (blue,
magenta curves).
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show that at the appropriate limit leads to appropriate values; when a± → 0, aP → 0, and

nK = 1 (no connectivity) we can calculate using LS theory the value of µP = µ± as a function

of concentration and compare it to the above equation. This is plotted in Figure 6, which

demonstrates that in the appropriate limit (low concentration cP , c± → 0, small aP , a±) this

result is indeed obtained. However, even upon retaining the nK = 1 condition we increase

to aP = 0.2nm and a± = 0.2nm and find that this has the effect of significantly changing

the value of µP , especially at high cP . Excluded volume thus plays a significant role, even

without connectivity effects.

We demonstrate how the connectivity further changes (in a drastic way) the values of

the chemical potentials µP and µ±. We plot in Figure 7a and b the calculation of the excess

chemical potential for µP,exc(φP , c±) and µ±,exc(φP , c±) which are both functions of both

salt and polyion concentration. These landscapes can be compared to the same values for

the Debye-Hückel excess chemical potential µexc,D−H in Figure 7c, obtained directly from

Equation 17. The excess chemical potential in the Debye-Hückel case becomes more and

more negative as the density of ions and/or density of polyions is increased. This is due to

the increasing electrostatic attraction. Alternatively, our PRISM-based model for both the

polyion and salt species have very different trends in Figure 7a and b. The low-φP and low-

c± region looks similar, with an initial decrease in the excess chemical potential. φP initially

shows a sharp decrease in the excess chemical potential due to cooperative behaviors that

initially enhance coacervation. However, as φP and/or c± are increased, there is an increase

in excluded volume effects due to the decreased configurational entropy enforced by the

finite size of the species. The strong differences are apparent, for example at low polymer

fraction φP = 0.04% all excess chemical potentials are plotted together in Figure 7d, where

the Voorn-Overbeek (Debye-Hückel) and PRISM models can be directly compared. The

results are striking, since despite approaching the Debye-Hückel limit in the salt ions there

is no similar limit for the polyions. This is not surprising, since the connectivity has long

been known to prevent the realization of a sufficiently low concentration appropriate for the
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Debye-Hückel limit.69

Figure 7: Excess chemical potential µexc,X as a function of salt concentration c± and polymer
volume fraction φP for polyion X = P (a) and salt X = ± (b). The complicated interplay
of the different landscapes can be contrasted to the straightforward landscape of the Debye-
Hückel expression for the excess chemical potential µexc,D−H that is plotted in (c). For a direct
comparison, µexc,X is shown in (d) for X = P,±, and D−H for the dilute-polymer situation.
In the appropriate limit, the ion excess chemical potential retains the Debye-Hückel result.
The polymer species does not, due to its connected nature nK = 6 prevents the dilute limit
from being realized. We note that in (a) and (b) there are significant upturns in the excess
chemical potential due to excluded volume; this is not present in the Debye-Hückel result.

We note that, despite reproducing the Voorn-Overbeek and counterion release concepts

in the appropriate limits, the coacervate system initially shown is such that the critical salt

concentration is an order of magnitude below that of many experimental systems. It is

therefore important to interrogate the differences between this model and traditional Voorn-

Overbeek and related theories,7–9,57,66,67 and subsequently examine how the articulation of
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molecular features may strongly alter the thermodynamics of coacervation. We identify two

specific features within the scope of this model that strongly affect coacervation behavior,

and demonstrate how this model relates to classical approaches. In particular, most theories

specifically neglect both excluded volume and connectivity correlations, and both of these

effects have strong but opposing ramifications in the context of coacervate thermodynamics.

Charge Connectivity

Charge correlations enforced by chain connectivity are neglected from the classical Voorn-

Overbeek theory, however Figure 5 demonstrates that strong differences in the pair corre-

lation functions arise as a result. As two charges on oppositely-charged polyions interact,

their adjacent charges along the chain are highly likely to interact. This interaction is less

entropically unfavorable than the initial pair of ions, since there is significantly less penalty

in translational entropy for the neighboring charges to interact. To probe this effect, we can

change connectivity in our model by adjusting one of two parameters - nK and dP . The

value of nK changes the effective “stiffness” of the chain by determining the scope of the

connectivity correlations along the chain. At nK = 1, there are no correlations and each

charged polyion species is identical to a salt ion (besides potentially the size of the charges).

As nK is increased, the position of charges are fixed at a distance (nK − 1)dP such that

the original charge senses neighbors along the chain for a total number of nK − 1 charges.

After that, connectivity correlations are considered negligible. We demonstrate the effect

of this in Figure 8a, which plots the phase coexistence for coacervates in the cP vs. c±

plane for nK = 1 − 10 at constant aP = 0.2nm, a± = 0.2nm, and dP = 0.5nm. As nK

is increased, connectivity correlations are enhanced and consequently coacervate formation

is enhanced. This is a drastic effect, with the critical salt concentration being increased to

very large values. This provides a direct connection with the strength of coacervation and

the molecular features of charge connectivity, suggesting that design at a molecular level of

coacervate materials is possible. In Figure 8 the ratio of charges in the α versus β phase,
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λ, is demonstrated by the dashed lines. We note that in our theory the number of salt ions

is typically lower in the polymer-rich phase, and decreases as the concentration of polymer

increases.

Figure 8: (a) Phase boundaries (solid lines, left axis) and ion partitioning λ (dashed lines,
right axis) as a function of salt concentration c± as a function of connectivity number nK .
a± = 0.2nm, aP = 0.2nm, and dP = 0.5nm. Increasing the connectivity number of the
polymer charge aP drastically enhances coacervation. (b) Phase boundaries (solid lines, left
axis) and ion partitioning λ (dashed lines, right axis) as a function of salt concentration c±
as a function of charge spacing dP/aP . a± = 0.2nm, aP = 0.2nm, and nK = 6. Decreasing
the charge spacing dP drastically enhances coacervation.

We likewise can change the distance between connected charges by adjusting dP . This

corresponds to increasing the spacing of charges along the chain, from being essentially

adjacent (dP = 0.4nm) to very distant (dP = 2.0nm). We plot this in Figure 8b, which

demonstrates the variation of dP with constant aP = 0.2nm, a± = 0.2nm, and nK = 6. This

leads to similar behaviors as increasing or decreasing the value of nK . As dP increases the

region of coacervate formation decreases significantly. This limit of dP → ∞ is consistent

with the limit of nK → 1, and leads to a disappearance of correlations due to connectivity.

Likewise, decreasing the value of dP results in enhanced coacervation. These two effects

combine to promote the cooperative interaction of oppositely-charged polyions; there is less

entropic penalty to have clusters of charge due to the connectivity between the charges en-

forcing the local presence of the ions upon initial charge interaction. This leads to significant
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net attraction between the polyions, and subsequently to coacervation.

We emphasize that connectivity correlation is not explicitly included in the Voorn-

Overbeek theory, but is central to counterion release ideas.7,8 This theory retains both of

these limits, and demonstrates that connectivity correlations play a large role in the forma-

tion of a coacervate system. While, in principle this should lead to enhanced coacervation

beyond the range of Voorn-Overbeek predictions,7,34 this is not observed in our current

theory.34 To explain this, we demonstrate that excluded volume also plays a key role in de-

termining coacervate thermodynamics, and does so in a fashion that has the opposing effect

of suppressing coacervate formation.

Excluded Volume

Coacervate phase behavior in this model is strongly dependent on the size of the charged

group along the polyions. The excluded volume can be substantial in these systems; 1M

of a salt with a hydrated radius of 3Å will exclude ≈ 7% of the total volume. Here we

systematically determine the nature of the bead size in the PRISM model on the thermo-

dynamics of the system. For the polymer, this involves adjusting the size of the charged

groups aP . These polyion charges are correlated beads, and the meaning of this with rela-

tion to the excluded volume inherent to the polymer portion (i.e. the Flory-Huggins aspect)

of the model is unclear. Importantly, we note that both the natural log contribution to the

chemical potential as well as even the χ-parameter incorporate the finite size of the species

involved; the latter through a Mayer integral that naturally incorporates finite size informa-

tion.56 Despite this imprecision, we can still change the size of these charges to change the

excluded volume effect in the scope of the LS portion of the calculation, and do so using

a± = 0.2nm, dP = 0.5nm, and nK = 6. We subsequently adjust aP = 0.14 − 0.2nm (we

consider smaller sizes to be most relevant due to the inclusion of finite sizes in other aspects

of the calculation). Figure 9a demonstrates the strong effect that changing the size of the

charges can have on the scope of the coexistence region. At small values of aP → 0.1nm, we
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observe a systematic enhancement of coacervation that is profoundly larger than the effects

of changing the salt ion size. We attribute this marked change in coacervation to two effects;

upon decreasing the size of aP the contact energy UC of two adjacent and oppositely-charged

polyions is much larger UC ∼ 1/(2aP ) increasing the driving force for coacervation. Likewise,

the excluded volume of the polyions becomes much smaller; this decreases the suppression

of coacervation due to the lower configurational entropy that occurs due to the finite size of

these species.

Figure 9: (a) Phase boundaries (solid lines, left axis) and ion partitioning λ (dashed lines,
right axis) as a function of salt concentration c± as a function of polymer charge size. a± =
0.2nm, nK = 6, and dP = 0.5nm. Decreasing the size of the polymer charge aP drastically
enhances coacervation. (b) Phase boundaries (solid lines, left axis) and ion partitioning λ
(dashed lines, right axis) as a function of salt concentration c± as a function of polymer
charge size. a± = 0.2nm, nK = 6, and dP = 0.5nm. In contrast to Figure 9a, the valency zP
is changed such that UC ∼ z2P/(2aP ) is constant. zP = 1.0 for aP = 0.3nm, however zP < 1.0
for aP < 0.3nm. Decreasing the size of the polymer charge aP still drastically enhances
coacervation.

To test the extent to which the finite size effects contribute to the observed phase behav-

ior, we vary the system in a similar fashion (with a± = 0.2nm, dP = 0.6nm, and nK = 6).

We once more adjust the value of aP , however the valency on the polymer charges zP is also

varied such that UC ∼ z2P/(2aP ) is constant. We use zP = 1 for aP = 0.3nm, and vary zP

accordingly with changes in aP (for example, zP = 0.707 for aP = 0.15). This maintains a

constant Coulombic interaction between directly-adjacent polyions, while varying the extent
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of the excluded volume interactions. This is observed in Figure 9b, which demonstrates that

there is a strong suppression of coacervation at large values of aP . Indeed, finite volume of

polyions has a profound effect on coacervation even when controlling for Coulombic inter-

action strength. Importantly, we note that even in the limit of φP → 0 there is a strong

difference in the extent of coacervation. This is apparent due to the non-zero presence of

sat ions c± � 0, which also feel the excluded volume interactions. As φP grows, so does the

disparity; this trend is due to the localization of the charges due to the charge connectivity,

since a high amount of correlation among connected charges clusters the interacting polyions.

This effective increase in the local concentration of the polyions leads to a pronounced change

in coacervation due to excluded volume effects that surpasses the already-high concentration

of species in solution.

To visualize the extent of this effect, we plot the curve µexc versus log (φP ) for the polymer

at constant c± at both high and low values of aP (Figure 10). In this situation, only aP

is varied while other values (a± = 0.2nm, nK = 6, c± = 0.15) are kept constant as in

Figure 9a. At low values of log (φP ), where excluded volume effects are not prevalent, the

initial decreasing slope in excess chemical potential (such that the polymer strongly desires

to be in a more dense phase) is slightly stronger when aP is smaller due to an increase in

the magnitude of the contact energy. Conversely, the eventual increase in excess chemical

potential (where the polymer starts to gain less free energy upon being incorporated into

the coacervate phase) due to excluded volume effects occurs later for lower values of aP .

These two effects combine to promote an enhanced degree of coacervation at lower values of

aP . We emphasize that the differences due to excluded volume appears to be of much larger

magnitude than the differences due to enhanced Coulombic attraction. It may be possible

to experimentally probe this effect. We note that excluded volume is already present in the

mean-field Flory-Huggins (and related) theories.55 However, these effects will be magnified by

the increased correlation of the volume-excluding species. This may be altered by changing

the relative location of bulky groups along the polymer backbone. If the bulky groups are
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Figure 10: Excess chemical potential of a polyion monomer µP,exc as a function of the log of
the polymer concentration φP . The initial decrease in the chemical potential, which enhances
coacervation, is stronger when aP is smaller due to higher electrostatic attraction between
the two oppositely-charge polyion species. At high values of φP , the eventual increase in
the chemical potential due to excluded volume effects is weaker with smaller aP . These two
effects lead to the strong enhancement of coacervation in low-aP systems.
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near charged monomers that are highly correlated, the excluded volume effects would be

stronger than if the same bulky groups are far from charged monomers.

Figure 11: Phase boundaries (solid lines, left axis) and ion partitioning λ (dashed lines, right
axis) as a function of salt concentration c± as a function of salt ion charge size. aP = 0.2nm,
nK = 6, and dP = 0.5nm. The value of λ strongly decreases as the size of the salt ions is
increased, since each ion takes up more of the unoccupied volume in the polymer rich phase.
This has very little bearing on the location of the coacervation binodal, which is essentially
unchanged. This is attributed to the ability of ions to equilibrate across the phase boundary,
such that the increased excluded volume effects due to increased charge size can be mitigated
by adjusting the concentration of salt ions in the polymer rich phase.

We can alternatively consider changes in ion size on the thermodynamics of the coacervate

phase. This is inherently different than altering the behavior of charge size among the

polymeric component, both because there is not a connectivity constraint among the ion

charges and also because they are free to equilibrate among the phases. We demonstrate

in Figure 11 the trend of charge size for constant values of aP = 0.1nm, dP = 0.5nm, and
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nK = 6. Here, the size of the ion has little effect on the coacervation behavior. This is due to

the equilibration of the salt ions between the two phases. If the salt ions are larger, then less

charges can occupy the polymer-rich phase but otherwise the coacervation thermodynamics

remain essentially unchanged. In essence, a given polymer chain ’sees’ the same salt ion

environment in both the polymer rich and poor phases, but in the polymer rich phase it is

interacting with the salt ions less due to the presence of other polymer chains. The finite

size of the salt ions does dictate their distribution between the two phases. Traditional

Voorn-Overbeek theory predicts an abundance of ions in the polymer rich phase rather than

the polymer poor phase; this is understandable, since the theory considers no reason not to

increase the charge density of the charge-rich phase (after all, the charges are the same for

the polymer and the ions!). For our theory (and other theories that include hard sphere or

excluded volume interactions)71,72 the opposite prediction holds - there must be fewer ions

in the polymer rich phase than the polymer poor phase. This is likewise straightforward,

since there is not the same amount of unoccupied volume in the polymer rich phase. We

demonstrate this in Figures 9a and b. This prediction of fewer salt ions in the coacervate

phase represents one of the major departures of our theory from Voorn-Overbeek and related

theories.

Conclusion

We have demonstrated using PRISM-based methods a new way of articulating charge struc-

ture in the context of coacervate systems. While we do not make any claims to quantitative

matching with experiments, we provide a few trends which appear to provide physically in-

tuitive reasons for the paradoxical state of the theory in complex coacervates. Namely, most

theories are related to the Voorn-Overbeek theory, which tends to match extremely well to

experiments.7–9,34 We note that these matchings still require a choice for χ as well as for the

strength of the Debye-Hückel term (Γ), both of which are used as fitting parameters. Even

34



theories that provide substantial improvements on the Voorn-Overbeek theory via impressive

field theoretical methods ultimately neglect most of these effects due to their manifestation

at truly atomistic levels of correlation that are well below the grid spacing used in these

theories.66,67 We illustrate that the omission of this length scale results in a cancellation of

errors that is primarily due to the neglect of both correlated excluded volume of the polymer

chains as well as the similarly-correlated connectivity among the charged polyions. This is

demonstrated by the systematically varying both the size and connectivity parameters of

our model. Perhaps the most striking difference is the drastically-different distribution of

salt ions in this theory. We predict a dearth of charges in the polyion-rich phase, while

Voorn-Overbeek predicts the opposite behavior.7,8

Our work allows an initial understanding of the ways in which different size and con-

nectivity of charges in coacervates may change equilibrium thermodynamics. We find a

number of differences between our results and behaviors predicted in alternative theories;

namely, we can directly address the differences due to charge structure that reveal effects

due to connectivity and finite charge size. In the appropriate limit, the LS theory repro-

duces Voorn-Overbeek theory, including the abundance of salt in the polymer-rich phase.

Nevertheless, most reasonable parameters do not demonstrate this behavior; rather, salt

ions are expelled from the polymer-rich phase due primarily to the excluded volume of the

polymer itself. The coacervation is instead driven by the cooperative interactions between

the oppositely-charged polyions. We observe strong effects due to polyion size differences,

which strongly suppress coacervation via excluded volume.

This rich array of behaviors may be observed in coacervate systems, and is analogous

to charged interactions in biological systems that have specific local order driven by con-

nected charges and precise molecular features.44,94 Importantly, connectivity behaviors can

drastically change the extent of coacervate formation, which is something that we hope to

continue to explore in future works. We consider this to be a promising new way to tune

self-assembly, with charge connectivity serving as a handle to directly manipulate phase be-
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havior via atomistic-level design. Modulating charge frequency along a polymer backbone,

for example, may be used to ’pattern’ polyions so that they self-assemble based on how

charges are arranged rather than traditional χ-based assembly. The similarity to charge-

based biological interactions reveal new opportunities to use this new richness of behavior to

emulate biological systems, and varying both charge connectivity and dispersive interactions

orthogonally may permit the realization of soft materials with highly specialized interactions

and functionality.
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