15 research outputs found

    Reduced Macrophage Apoptosis is Associated with Accelerated Atherosclerosis in Low-Denstiy Lipoprotein Receptor-Null Mice

    Get PDF
    Objective— The majority of apoptotic cells in atherosclerotic lesions are macrophages. However, the pathogenic role of macrophage apoptosis in the development of atherosclerosis remains unclear. Elevated expression of Bax, one of the pivotal proapoptotic proteins of the Bcl-2 family, has been found in human atherosclerotic plaques. Activation of Bax also occurs in free cholesterol-loaded and oxysterol-treated mouse macrophages. In this study, we examined the effect of Bax deficiency in bone marrow-derived leukocytes on the development of atherosclerosis in low-density lipoprotein receptor-null (LDLR−/−) mice. Methods and Results— Fourteen 8-week-old male LDLR−/− mice were lethally irradiated and reconstituted with either wild-type (WT) C57BL6 or Bax-null (Bax−/−) bone marrow. Three weeks later, the mice were challenged with a Western diet for 10 weeks. No differences were found in the plasma cholesterol level between the WT and Bax−/− group. However, quantitation of cross sections from proximal aorta revealed a 49.2% increase (P=0.0259) in the mean lesion area of the Bax−/− group compared with the WT group. A 53% decrease in apoptotic macrophages in the Bax−/− group was found by TUNEL staining (P\u3c0.05). Conclusions— The reduction of apoptotic activity in macrophages stimulates atherosclerosis in LDLR−/− mice, which is consistent with the hypothesis that macrophage apoptosis suppresses the development of atherosclerosis

    AKT/Protein Kinase B Regulation of BCL Family Members during Oxysterol-induced Apoptosis

    Get PDF
    Cells of the vasculature, including macrophages, smooth muscle cells, and endothelial cells, exhibit apoptosis in culture upon treatment with oxidized low density lipoprotein, as do vascular cells of atherosclerotic plaque. Several lines of evidence support the hypothesis that the apoptotic component of oxidized low density lipoprotein is one or more oxysterols, which have been shown to induce apoptosis through the mitochondrial pathway. Activation of the mitochondrial pathway of apoptosis is regulated by members of the BCL family of proteins. In this study, we demonstrate that, in the murine macrophage-like cell line P388D1, oxysterols (25-hydroxycholesterol and 7-ketocholesterol) induced the degradation of the prosurvival protein kinase AKT (protein kinase B). This led, in turn, to the activation of the BCL-2 homology-3 domain-only proteins BIM and BAD and down-regulation of the anti-apoptotic multi-BCL homology domain protein BCL-xL. These responses would be expected to activate the pro-apoptotic multi-BCL homology domain proteins BAX and BAK, leading to the previously reported release of cytochrome c observed during oxysterol-induced apoptosis. Somewhat surprisingly, small interfering RNA knockdown of BAX resulted in a complete block of the induction of apoptosis by 25-hydroxycholesterol

    Isolation of a Somatic Cell Mutant Resistant to the Induction of Apoptosis by Oxidized Low Density Lipoprotein

    Get PDF
    Oxidized low density lipoprotein (oxLDL) induces apoptosis in macrophages, smooth muscle cells, and endothelial cells. To elucidate the molecular mechanism of oxLDL-induced cytotoxicity and determine its tissue specificity, we have used Chinese hamster ovary (CHO)-K1 cells expressing human CD36 (CHO/CD36). Expression of CD36 rendered these cells susceptible to killing by oxLDL. This cytotoxicity was due to the induction of apoptosis. Therefore, CD36 expression is the only requirement for oxLDL-induced apoptosis. Oxysterols apparently mediate the cytotoxicity of oxLDL in macrophage foam cells and endothelial cells. 25-Hydroxycholesterol, at concentrations higher than 1 μg/ml, killed CHO-K1 cells, by apoptosis, in medium supplemented with serum as a source of cholesterol. These effects were not seen in a 25-hydroxycholesterol-resistant CHO/CD36 mutant (OX(R)), which was otherwise capable of undergoing apoptosis in response to staurosporine. This mutant was also resistant to killing by oxLDL, suggesting that oxysterols are at least partially responsible for the toxic effects of oxLDL. Oxysterol-induced apoptosis did not involve regulation of sterol regulatory element-binding protein proteolysis or the cholesterol biosynthetic pathway. 25-Hydroxycholesterol stimulated calcium uptake by CHO-K1 cells within 2 min after addition. Treatment of CHO or THP-1 (macrophage) cells with the calcium channel blocker nifedipine prevented 25-hydroxycholesterol induction of apoptosis. OX(R) showed no enhanced calcium uptake in response to 25- hydroxycholesterol

    Arachidonate Metabolism and the Signaling Pathway of Induction of Apoptosis by Oxidized LDL/Oxysterol

    Get PDF
    Owing at least in part to oxysterol components that can induce apoptosis, oxidized LDL (oxLDL) is cytotoxic to mammalian cells with receptors that can internalize it. Vascular cells possess such receptors, and it appears that the apoptotic response of vascular cells to the oxysterols borne by oxLDL is an important part of the atherogenic effects of oxLDL. Thus, an analysis of the signaling pathway of apoptotic induction by oxysterols is of value in understanding the development of atherosclerotic plaque. In a prior study, we demonstrated an induction of calcium ion flux into cells treated with 25-hydroxycholesterol (25-OHC) and showed that this response is essential for 25-OHC-induced apoptosis. One possible signal transduction pathway initiated by calcium ion fluxes is the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we demonstrate that activation of cPLA2 does occur in both macrophages and fibroblasts treated with 25-OHC or oxLDL. Activation is evidenced by 25-OHC-induced relocalization of cPLA2 to the nuclear envelope and arachidonic acid release. Loss of cPLA2 activity, either through genetic knockout in mice, or by treatment with a cPLA2 inhibitor, results in an attenuation of arachidonic acid release as well as of the apoptotic response to oxLDL in peritoneal macrophages or to 25-OHC in cultured fibroblast and macrophage cell lines

    Acyl-coenzyme a:Cholesterol Acyltransferase Promotes Oxidized LDL/Oxysterol-Induced Apoptosis in Macrophages

    Get PDF
    7-Ketocholesterol (7KC) is a cytotoxic component of oxidized low density lipoproteins (OxLDLs) and induces apoptosis in macrophages by a mechanism involving the activation of cytosolic phospholipase A2 (cPLA 2). In the current study, we examined the role of ACAT in 7KC-induced and OxLDL-induced apoptosis in murine macrophages. An ACAT inhibitor, Sandoz 58-035, suppressed 7KC-induced apoptosis in P388D1 cells and both 7KC-induced and OxLDL-induced apoptosis in mouse peritoneal macrophages (MPMs). Furthermore, compared with wild-type MPMs, ACAT-1-deficient MPMs demonstrated significant resistance to both 7KC-induced and OxLDL-induced apoptosis. Macrophages treated with 7KC accumulated ACAT-derived [14C]cholesteryl and [ 3H]7-ketocholesteryl esters. Tandem LC-MS revealed that the 7KC esters contained primarily saturated and monounsaturated fatty acids. An inhibitor of CPLA2, arachidonyl trifluoromethyl ketone, prevented the accumulation of 7KC esters and inhibited 7KC-induced apoptosis in P388B1 cells. The decrease in 7KC ester accumulation produced by the inhibition of cPLA 2 was reversed by supplementing with either oleic or arachidonic acid (AA); however, only AA supplementation restored the induction of apoptosis by 7KC. These results suggest that 7KC not only initiates the apoptosis pathway by activating cPLA2, as we have reported previously, but also participates in the downstream signaling pathway when esterified by ACAT to form 7KC-arachidonate

    RhoC-GTPase is a Novel Tissue Biomarker Associated with Biologically Aggressive Carcinomas of the Breast

    Full text link
    Background. There is a need for reliable predictors of breast cancer aggressiveness that will further refine the staging classification and help guide the implementation of novel therapies. We have identified RhoC as being nearly always overexpressed in the most aggressive form of breast cancer, inflammatory breast cancer (IBC); in subsequent work we identified RhoC to be a promising marker of aggressive behavior in breast cancers less than 1 cm in diameter. We hypothesized that RhoC expression would identify aggressive, non-IBC tumors breast cancer patients at any stage with worse outcomes defined as recurrence and/or metastasis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44231/1/10549_2005_Article_4170.pd

    25-Hydroxycholesterol Activates a Cytochrome C Release-Mediated Caspase Cascade

    No full text
    We have previously shown that 25-hydroxycholesterol (25-OHC) treated CHO-K1 cells could be used as a model to investigate the signaling pathway of apoptosis induced by oxidized LDL in vascular cells. In the present study, we examine the execution phase of the apoptotic pathway in CHO-K1 cell death induced by 25-OHC. Oxysterol-induced apoptosis in CHO-K1 was accompanied by caspase activation and was preceded by mitochondrial cytochrome c release. The addition of a competitive caspase-3 inhibitor, Ac-DEVD-CHO, prevented 25-OHC-induced apoptotic cell death. Furthermore, immunoblot analysis showed that 25-OHC treatment induced the degradation of poly(ADP-ribose) polymerase (PARP) - a substrate for caspase 3 and a key enzyme involved in genome surveillance and DNA repair. Thus, we could demonstrate in CHO-K1 cells that 25-OHC activates the apoptotic machinery through induction of the release of cytochrome c from mitochodria into the cytosol and activation of a typical caspase cascade

    Transcriptional Homeostatic Control of Membrane Lipid Composition

    No full text
    Plasma membranes have a structural property, commonly referred to as membrane fluidity, that is compositionally regulated. The two main features of plasma membrane lipid composition that determine membrane fluidity are the ratio of cholesterol to phospholipids and the ratio of saturated to unsaturated fatty acids that are incorporated into the phospholipids. These ratios are determined, at least in part, by regulation of membrane lipid biosynthesis-particularly that of cholesterol and oleate. It now appears that cholesterol and oleate biosynthesis are feedback regulated by a common transcriptional mechanism which is governed by the maturation of the SREBP transcription factors. In this article, we briefly review our current understanding of transcriptional regulation of plasma membrane lipid biosynthesis by sterols and oleate. We also discuss studies related to the mechanism by which the physical state of membrane lipids signals the transcriptional regulatory machinery to control the rates of synthesis of these structural components of the lipid bilayer

    Stimulation of Akt Poly-Ubiquitination and Proteasomal Degradation in P388D1 Cells by 7-Ketocholesterol and 25-Hydroxycholesterol

    No full text
    Akt plays a role in protecting macrophages from apoptosis induced by some oxysterols. Previously we observed enhanced degradation of Akt in P388D1 moncocyte/macrophages following treatment with 25-hydroxycholesterol (25-OH) or 7-ketocholesterol (7-KC). In the present report we examine the role of the ubiquitin proteasomal pathway in this process. We show that treatment with 25-OH or 7-KC results in the accumulation of poly-ubiquitinated Akt, an effect that is enhanced by co-treatment with the proteasome inhibitor MG-132. Modification of Akt by the addition of a Gly-Ala repeat (GAr), a domain known to block ubiquitin-dependent targeting of proteins to the proteasome, resulted in a chimeric protein that is resistant to turn-over induced by 25-OH or 7-KC and provides protection from apoptosis induced by these oxysterols. These results uncover a new aspect of oxysterol regulation of Akt in macrophages; oxysterol-stimulated poly-ubiquitination of Akt and degradation by the proteasomal pathway
    corecore