6 research outputs found

    Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy.

    No full text
    PURPOSE: Disease recurrence is a common problem in breast cancer and yet the mechanisms enabling tumor cells to evade therapy and colonize distant organs remain unclear. We sought to characterize global expression changes occurring with metastatic disease progression in the endocrine-resistant setting. EXPERIMENTAL DESIGN: Here, for the first time, RNAsequencing has been performed on matched primary, nodal, and liver metastatic tumors from tamoxifen-treated patients following disease progression. Expression of genes commonly elevated in the metastases of sequenced patients was subsequently examined in an extended matched patient cohort with metastatic disease from multiple sites. The impact of tamoxifen treatment on endocrine-resistant tumors in vivo was investigated in a xenograft model. RESULTS: The extent of patient heterogeneity at the gene level was striking. Less than 3% of the genes differentially expressed between sequential tumors were common to all patients. Larger divergence was observed between primary and liver tumors than between primary and nodal tumors, reflecting both the latency to disease progression and the genetic impact of intervening therapy. Furthermore, an endocrine-resistant in vivo mouse model demonstrated that tamoxifen treatment has the potential to drive disease progression and establish distant metastatic disease. Common functional pathways altered during metastatic, endocrine-resistant progression included extracellular matrix receptor interactions and focal adhesions. CONCLUSIONS: This novel global analysis highlights the influence of primary tumor biology in determining the transcriptomic profile of metastatic tumors, as well as the need for adaptations in cell-cell communications to facilitate successful tumor cell colonization of distant host organs.</p

    S100β as a serum marker in endocrine resistant breast cancer.

    No full text
    BACKGROUND: Endocrine therapy is standard treatment for estrogen receptor (ER)-positive breast cancer. However, its efficacy is limited by intrinsic and acquired resistance. Here the potential of S100β as a biomarker and inhibition of its signaling network as a therapeutic strategy in endocrine treated patients was investigated. METHODS: The expression of S100β in tissue and serum was assessed by immunohistochemistry and an enzyme-linked immunosorbent assay, respectively. The S100β signaling network was investigated in cell line models of endocrine resistance by western blot, PCR, immunoprecipitation, and chromatin-immunoprecipitation. Endocrine resistant xenografts and tumor explants from patients with resistant tumors were treated with endocrine therapy in the presence and absence of the p-Src kinase inhibitor, dasatinib. RESULTS: Tissue and serum levels of S100β were found to predict poor disease-free survival in endocrine-treated patients (n = 509, HR 2.32, 95% CI is 1.58-3.40, p  CONCLUSIONS: S100β has potential as a new surveillance tool for patients with ER-positive breast cancer to monitor ongoing response to endocrine therapy. Moreover, endocrine resistant breast cancer patients with elevated S100β may benefit from combined endocrine and tyrosine-kinase inhibitor treatment. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01840293 ). Registered on 23 April 2013. Retrospectively registered.</p

    Dynamic epi-transcriptomic landscape mapping with disease progression in estrogen receptor-positive breast cancer

    No full text
    The molecular determinants that drive breast cancer progression to metastasis are complex and partly controlled by nucleic acid epi-modifications. Although DNA-methyl modifications in breast cancer metastasis have been well described, there is limited understanding of the role of RNA methylation in advanced disease. This study aimed to provide an understanding on the role of the epi-transcriptome in estrogen receptor-positive (ER+) breast cancer progression to metastasis.</p

    Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities

    No full text
    The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance

    CTC-5: A novel digital pathology approach to characterise circulating tumour cell biodiversity

    No full text
    Metastatic progression and tumor evolution complicates the clinical management of cancer patients. Circulating tumor cell (CTC) characterization is a growing discipline that aims to elucidate tumor metastasis and evolution processes. CTCs offer the clinical potential to monitor cancer patients for therapy response, disease relapse, and screen 'at risk' groups for the onset of malignancy. However, such clinical utility is currently limited to breast, prostate, and colorectal cancer patients. Further understanding of the basic CTC biology of other malignancies is required to progress them towards clinical utility. Unfortunately, such basic clinical research is often limited by restrictive characterization methods and high-cost barrier to entry for CTC isolation and imaging infrastructure. As experimental clinical results on applications of CTC are accumulating, it is becoming clear that a two-tier system of CTC isolation and characterization is required. The first tier is to facilitate basic research into CTC characterization. This basic research then informs a second tier specialised in clinical prognostic and diagnostic testing. This study presented in this manuscript describes the development and application of a low-cost, CTC isolation and characterization pipeline; CTC-5. This approach uses an established 'isolation by size' approach (ScreenCell Cyto) and combines histochemical morphology stains and multiparametric immunofluorescence on the same isolated CTCs. This enables capture and characterization of CTCs independent of biomarker-based pre-selection and accommodates both single CTCs and clusters of CTCs. Additionally, the developed open-source software is provided to facilitate the synchronization of microscopy data from multiple sources (https://github.com/CTC5/). This enables high parameter histochemical and immunofluorescent analysis of CTCs with existing microscopy infrastructure without investment in CTC specific imaging hardware. Our approach confirmed by the number of successful tests represents a potential major advance towards highly accessible low-cost technology aiming at the basic research tier of CTC isolation and characterization. The biomarker independent approach facilitates closing the gap between malignancies with poorly, and well-defined CTC phenotypes. As is currently the case for some of the most commonly occurring breast, prostate and colorectal cancers, such advances will ultimately benefit the patient, as early detection of relapse or onset of malignancy strongly correlates with their prognosis. </p

    Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets.

    No full text
    Background: Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease.Methods: Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided.Results: Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, Padj Conclusions: RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.</p
    corecore