180 research outputs found

    Phase diagram of the spin-1/2 J1J_1-J2J_2-J3J_3 Heisenberg model on the square lattice

    Full text link
    We presents the results of an extensive numerical study of the phase diagram of the spin-1/2, \protect{J1J_1-J2J_2-J3J_3} Heisenberg model on a square lattice, for both ferromagnetic and antiferromagnetic nearest-neighbor interactions J1J_1, using exact diagonalization with periodic and twisted boundary conditions. Comparison is made with published spin wave calculations. We show that quantum fluctuations play a very important role, changing both the extent and the wave vector of classical spiral phases, and leading to new quantum phases where the classical spiral states have a high degeneracy. These include a new phase with small or vanishing spin-stiffness, in addition to known valence-bond-solid and bond-nematic phases.Comment: submitted for the International Conference on Magnetism to be held 26-31 July 2009 in Karlsruh

    An investigation of the quantum J1βˆ’J2βˆ’J3J_1-J_2-J_3 model on the honeycomb lattice

    Full text link
    We have investigated the quantum J1βˆ’J2βˆ’J3J_1-J_2-J_3 model on the honeycomb lattice with exact diagonalizations and linear spin-wave calculations for selected values of J2/J1J_{2}/J_{1}, J3/J1J_{3}/J_{1} and antiferromagnetic (J1>0J_{1}>0) or ferromagnetic (J1<0J_{1}<0) nearest neighbor interactions. We found a variety of quantum effects: "order by disorder" selection of a N{\'e}el ordered ground-state, good candidates for non-classical ground-states with dimer long range order or spin-liquid like. The purely antiferromagnetic Heisenberg model is confirmed to be N{\'e}el ordered. Comparing these results with those observed on the square and triangular lattices, we enumerate some conjectures on the nature of the quantum phases in the isotropic models.Comment: 14 pages, 22 Postscript figures, uses svjour.cls and svepj.clo, submitted to European Physical Journal B: condensed matter physi

    Exact diagonalization Studies of Two-dimensional Frustrated Antiferromagnet Models

    Full text link
    We describe the four kinds of behavior found in two-dimensional isotropic quantum antiferromagnets. Two of them display long range order at T=0: the N\'eel state and the Valence Bond Crystal. The last two are Spin-Liquids. Properties of these different states are shortly described and open questions are underlined.Comment: 7 pages; invited talk at "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    Some remarks on the Lieb-Schultz-Mattis theorem and its extension to higher dimensions

    Full text link
    The extension of the Lieb-Schultz-Mattis theorem to dimensions larger than one is discussed. It is explained why the variational wave-function built by the previous authors is of no help to prove the theorem in dimension larger than one. The short range R.V.B. picture of Sutherland, Rokhsar and Kivelson, Read and Chakraborty gives a strong support to the assertion that the theorem is indeed valid in any dimension. Some illustrations of the general ideas are displayed on exact spectra.Comment: 12 pages, LaTeX with 4 EPS figures embedded in the documen

    Coupled frustrated quantum spin-1/2 chains with orbital order in volborthite Cu3V2O7(OH)2(H2O)2

    Full text link
    We present a microscopic magnetic model for the spin-liquid candidate volborthite Cu3V2O7(OH)2(H2O)2. The essentials of this DFT-based model are (i) the orbital ordering of Cu(1) 3d 3z2-r2 and Cu(2) 3d 3x2-y2, (ii) three relevant couplings J_ic, J_1 and J_2, (iii) the ferromagnetic nature of J_1 and (iv) frustration governed by the next-nearest-neighbor exchange interaction J_2. Our model implies magnetism of frustrated coupled chains in contrast to the previously proposed anisotropic kagome model. Exact diagonalization studies reveal agreement with experiments.Comment: 5 pages, 4 figures + supplementar
    • …
    corecore