6,641 research outputs found

    Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States

    Get PDF
    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement.We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states

    Effects of footwear variations on three-dimensional kinematics and tibial accelerations of specific movements in American football

    Get PDF
    American football is associated with a high rate of non-contact chronic injuries. Players are able to select from both high and low cut footwear. The aim of the current investigation was to examine the influence of high and low cut American football specific footwear on tibial accelerations and three-dimensional (3D) kinematics during three sport specific movements. Twelve male American football players performed three movements, run, cut and vertical jump whilst wearing both low and high cut footwear. 3D kinematics of the lower extremities were measured using an eight-camera motion analysis system alongside tibial acceleration parameters which were obtained using a shank mounted accelerometer. Tibial acceleration and 3D kinematic differences between the different footwear were examined using either repeated measures or Friedman’s ANOVA. Tibial accelerations were significantly greater in the low cut footwear in comparison to the high cut footwear for the run and cut movements. In addition, peak ankle eversion and tibial internal rotation parameters were shown to be significantly greater in the low cut footwear in the running and cutting movement conditions. The current study indicates that the utilization of low cut American football footwear for training/performance may place American footballers at increased risk from chronic injuries

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Evidence for hard chiral logarithms in quenched lattice QCD

    Get PDF
    We present the first direct evidence that quenched QCD differs from full QCD in the chiral (mq0m_q \rightarrow 0) limit, as predicted by chiral perturbation theory, from our quenched lattice QCD simulations at β=6/g2=6.0\beta = 6/g^2 = 6.0. We measured the spectrum of light hadrons on 163×6416^3 \times 64, 243×6424^3 \times 64 and 323×6432^3 \times 64, using staggered quarks of masses mq=0.01m_q=0.01, mq=0.005m_q=0.005 and mq=0.0025m_q=0.0025. The pion masses showed clear evidence for logarithmic violations of the PCAC relation mπ2mqm_{\pi}^2 \propto m_q, as predicted by quenched chiral perturbation theory. The dependence on spatial lattice volume precludes this being a finite size effect. No evidence was seen for such chiral logarithms in the behaviour of the chiral condensate ψˉψ\langle\bar{\psi}\psi\rangle.Comment: 10 pages, 4 figures, uuencoded compressed postscript fil

    Thermodynamics of lattice QCD with 2 sextet quarks on N_t=8 lattices

    Full text link
    We continue our lattice simulations of QCD with 2 flavours of colour-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the β\beta-function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This non-trivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it 'walks'. We are simulating the lattice version of this theory with staggered quarks at finite temperature studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (NtN_t) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with Nt=4,6N_t=4,6 show both transitions move to weaker couplings as NtN_t increases consistent with walking behaviour. In this paper we extend these calculations to Nt=8N_t=8. Although both transition again move to weaker couplings the change in the coupling at the chiral transition from Nt=6N_t=6 to Nt=8N_t=8 is appreciably smaller than that from Nt=4N_t=4 to Nt=6N_t=6. This indicates that at Nt=4,6N_t=4,6 we are seeing strong coupling effects and that we will need results from Nt>8N_t > 8 to determine if the chiral-transition coupling approaches zero as NtN_t \rightarrow \infty, as needed for the theory to walk.Comment: 21 pages Latex(Revtex4) source with 4 postscript figures. v2: added 1 reference. V3: version accepted for publication, section 3 restructured and interpretation clarified. Section 4 future plans for zero temperature simulations clarifie

    Towards the electron EDM search: Theoretical study of HfF+

    Get PDF
    We report first ab initio relativistic correlation calculations of potential curves for ten low-lying electronic states, effective electric field on the electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy transition metal fluoride, HfF^+, that is suggested to be used as the working state in experiments to search for the electric dipole moment of the electron. It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the relatively long-lived first excited state lying about 0.2 eV higher. The calculated effective electric field E_eff=W_d|\Omega| acting on an electron in this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page

    Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation

    Full text link
    In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr. vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus-Dione system through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical Astronom

    Photoperiod Response in Pensacola Bahiagrass

    Get PDF
    Photoperiod response has been found to influence the growth and development of \u3ePensacola\u27 derived bahiagrass (Paspalum notatum Flugge var. saure Parodi). Four selection cycles [\u3ePensacola= (Cycle 0), Cycle 4, \u3eTifton 9\u27 (Cycle 9) and Cycle 23] resulting from recurrent restricted phenotypic selection (RRPS) of spaced-plants, were field grown in 1999 and 2000, to study photoperiod sensitivity among genotypes. Two day-length treatments were imposed on the field grown plants. One treatment, used only natural light. The second treatment imposed an extended day-length treatment using Quartz-halogen lamps, installed in the field during the fall and winter, to extend day-length to15 hours. The top growth of individual plants was harvested three times during the fall and winter seasons and stolon spread was measured in mid February, 2000. Top growth was increased by the extended day-length treatment for Pensacola and RRPS Cycle 4 in all three harvest dates. Top growth of Tifton 9 was unaffected by the extended light for the September harvest, but increased in the late October and late January harvests. RRPS Cycle 23 plants grown under natural light, out-yielded the plants grown under extended light treatment, for the first two harvests. There were no differences in yields of RRPS Cycle 23 plants from extended or natural light from the January harvest. The later cycles, Tifton 9 and RRPS Cycle 23, were less sensitive to day-length, than RRPS Cycles 0 and 4. Extended daylength, for all cycles, dramatically reduced stolon spread by nearly half that of the plants grown under natural light. Results from this experiment demonstrate a high sensitivity in growth and development of Pensacola-derived bahiagrass to day-length

    A Survey for H2O Megamasers III. Monitoring Water Vapor Masers in Active Galaxies

    Get PDF
    We present single-dish monitoring of the spectra of 13 extragalactic water megamasers taken over a period of 9 years and a single epoch of sensitive spectra for 7 others. Our data include the first K-band science observations taken with the new 100 m Green Bank Telescope (GBT). In the context of a circumnuclear, molecular disk model, our results suggest that either (a) the maser lines seen are systemic features subject to a much smaller acceleration than present in NGC 4258, presumably because the gas is farther from the nuclear black hole, or (b) we are detecting ``satellite'' lines for which the acceleration is in the plane of the sky. We also report a search for water vapor masers towards the nuclei of 58 highly inclined, nearby galaxies.Comment: accepted by ApJ

    Quantum Memory with a controlled homogeneous splitting

    Full text link
    We propose a quantum memory protocol where a input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal Electromagnetically-Induced-Transparency (EIT) is only formal because no ground state coherence based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time, the protocols are perfectly efficient and noise-free. We compare the technique to other quantum memories, and propose atomic systems where the experiment can be realized.Comment: submitted to New Journal of Physics, Focus on Quantum Memor
    corecore