9,366 research outputs found
Board Walk – January 2020
[No abstract available
Electrical properties of breast cancer cells from impedance measurement of cell suspensions
Impedance spectroscopy of biological cells has been used to monitor cell status, e.g. cell proliferation, viability, etc. It is also a fundamental method for the study of the electrical properties of cells which has been utilised for cell identification in investigations of cell behaviour in the presence of an applied electric field, e.g. electroporation. There are two standard methods for impedance measurement on cells. The use of microelectrodes for single cell impedance measurement is one method to realise the measurement, but the variations between individual cells introduce significant measurement errors. Another method to measure electrical properties is by the measurement of cell suspensions, i.e. a group of cells within a culture medium or buffer. This paper presents an investigation of the impedance of normal and cancerous breast cells in suspension using the Maxwell-Wagner mixture theory to analyse the results and extract the electrical parameters of a single cell. The results show that normal and different stages of cancer breast cells can be distinguished by the conductivity presented by each cell. © 2010 IOP Publishing Ltd
The Partition Function of Multicomponent Log-Gases
We give an expression for the partition function of a one-dimensional log-gas
comprised of particles of (possibly) different integer charge at inverse
temperature {\beta} = 1 (restricted to the line in the presence of a
neutralizing field) in terms of the Berezin integral of an associated non-
homogeneous alternating tensor. This is the analog of the de Bruijn integral
identities [3] (for {\beta} = 1 and {\beta} = 4) ensembles extended to
multicomponent ensembles.Comment: 14 page
Process development and pilot-plant production of silane polymers of diols Annual summary report, 22 Apr. 1966 - 22 Apr. 1967
Preparation of cross-linkable linear high molecular weight polyaryloxysilane
The Relationship Between Purchase Decisions and Quality Assessment of Office Furniture
The use of multiple attributes to measure attitudes and predisposition to certain behavior in marketing was developed in the 1970s in studies aimed at identifying determinant attributes. Rising concerns over quality in the 1980s saw similar use of attributes to define quality. Some authors of these latter studies infer that quality and determinant attributes are one and the same; however, no studies were found that directly examined this relationship. This study was undertaken to examine the determinant attribute/quality attribute relationship in office furniture. More than 260 purchasing executives nationwide participated in rating 26 product and dealer/manufacturer attributes on the basis of their influence on purchase decisions and on the basis of their use in assessing quality. Respondents rated attributes on importance and on the degree of difference in a particular attribute among the products and services available to them.The three most important attributes respondents used to rate quality were: (1) absence of defects, (2) delivery on schedule, and (3) structural integrity. The three most important attributes influencing purchase decisions were: (1) absence of defects, (2) structural integrity, and (3) reliability.Results indicate a very high correlation between purchase decisions and quality assessment in the relative rankings of the 26 attributes. However, the results suggest that purchasing executives place more importance on attributes in the purchase decision but may perceive bigger differences in the attributes when assessing quality
Mid-infrared quantum optics in silicon
Applied quantum optics stands to revolutionise many aspects of information
technology, provided performance can be maintained when scaled up. Silicon
quantum photonics satisfies the scaling requirements of miniaturisation and
manufacturability, but at 1.55 m it suffers from unacceptable linear and
nonlinear loss. Here we show that, by translating silicon quantum photonics to
the mid-infrared, a new quantum optics platform is created which can
simultaneously maximise manufacturability and miniaturisation, while minimising
loss. We demonstrate the necessary platform components: photon-pair generation,
single-photon detection, and high-visibility quantum interference, all at
wavelengths beyond 2 m. Across various regimes, we observe a maximum net
coincidence rate of 448 12 Hz, a coincidence-to-accidental ratio of 25.7
1.1, and, a net two photon quantum interference visibility of 0.993
0.017. Mid-infrared silicon quantum photonics will bring new quantum
applications within reach.Comment: 8 pages, 4 figures; revised figures, updated discussion in section 3,
typos corrected, added referenc
Attitude Determination from Single-Antenna Carrier-Phase Measurements
A model of carrier phase measurement (as carried out by a satellite
navigation receiver) is formulated based on electromagnetic theory. The model
shows that the phase of the open-circuit voltage induced in the receiver
antenna with respect to a local oscillator (in the receiver) depends on the
relative orientation of the receiving and transmitting antennas. The model
shows that using a {\it single} receiving antenna, and making carrier phase
measurements to seven satellites, the 3-axis attitude of a user platform (in
addition to its position and time) can be computed relative to an initial
point. This measurement model can also be used to create high-fidelity
satellite signal simulators that take into account the effect of platform
rotation as well as translation.Comment: 12 pages, and one figure. Published in J. Appl. Phys. vol. 91, No. 7,
April 1, 200
Quantum Memory with a controlled homogeneous splitting
We propose a quantum memory protocol where a input light field can be stored
onto and released from a single ground state atomic ensemble by controlling
dynamically the strength of an external static and homogeneous field. The
technique relies on the adiabatic following of a polaritonic excitation onto a
state for which the forward collective radiative emission is forbidden. The
resemblance with the archetypal Electromagnetically-Induced-Transparency (EIT)
is only formal because no ground state coherence based slow-light propagation
is considered here. As compared to the other grand category of protocols
derived from the photon-echo technique, our approach only involves a
homogeneous static field. We discuss two physical situations where the effect
can be observed, and show that in the limit where the excited state lifetime is
longer than the storage time, the protocols are perfectly efficient and
noise-free. We compare the technique to other quantum memories, and propose
atomic systems where the experiment can be realized.Comment: submitted to New Journal of Physics, Focus on Quantum Memor
Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02
Microdosimetric data indicate that the mean specific energy,zeta, produced by individual charged particles from X rays and gamma rays is different for the two radiation qualities by nearly a factor of two. In order to test whether this influences the initial, linear component in the dose-effect relations, a comparison was made between dose-response curves for pink somatic mutations inTradescantia clone 02 stamen hairs following X and gamma irradiations. Absorbed doses ranged from 2.66 to 300 rad. The results are in agreement with predictions made on the basis of microdosimetric data. At low doses gamma rays are substantially less effective than X rays. The RBE of gamma rays vs. X rays at low doses was approximately 0.6, a value lower than those usually reported in other experimental systems
- …