207 research outputs found

    Epigenetic control of Epstein–Barr virus transcription – relevance to viral life cycle?

    Get PDF
    DNA methylation normally leads to silencing of gene expression but Epstein–Barr virus (EBV) provides an exception to the epigenetic paradigm. DNA methylation is absolutely required for the expression of many viral genes. Although the viral genome is initially un-methylated in newly infected cells, it becomes extensively methylated during the establishment of viral latency. One of the major regulators of EBV gene expression is a viral transcription factor called Zta (BZLF1, ZEBRA, Z) that resembles the cellular AP1 transcription factor. Zta recognizes at least 32 variants of a 7-nucleotide DNA sequence element, the Zta-response element (ZRE), some of which contain a CpG motif. Zta only binds to the latter class of ZREs in their DNA-methylated form, whether they occur in viral or cellular promoters and is functionally relevant for the activity of these promoters. The ability of Zta to interpret the differential DNA methylation of the viral genome is paramount for both the establishment of viral latency and the release from latency to initiate viral replication

    Enhancing students’ confidence in employability skills through the practice of “recall, adapt and apply”

    Get PDF
    The ability to apply prior knowledge to new challenges is a skill that is highly valued by employers, but the confidence to achieve this does not come naturally to all students. An essential step to becoming an independent researcher requires a transition between simply following a fail-safe set of instructions to being able to adapt a known approach to solve a new problem. Practical laboratory classes provide an ideal environment for active learning, as the primary learning objective of these teaching sessions is to gain skills. However, laboratory handbooks can be presented as a series of fail-safe recipes. This aids the smooth running of practical classes but misses the opportunity to promote engagement with the underlying theory and so develop confidence in recalling approaches and adapting them to a new problem. To aid the development of employability skills, a practical laboratory series was developed for Bioscience teaching that requires on-the-spot decision-making, the recall of skills and their adaptation to new challenges. After using this approach, the proportion of student’s expressing a high level of confidence with each of eight key employability skills rose by between 9 and 35% following the practical sessions, showing that the approach of recalling, adapting then applying prior knowledge and skills can increase the confidence that students have in their employability related skills. The approach was developed for use within biological sciences practical laboratories but the principles can be adapted to any discipline involving project work

    Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding

    Get PDF
    Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part this is mediated through down regulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. The repression is achieved through a reduction in CIITA promoter activity initiated by the EBV transcription and replication factor Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence specific elements in promoters, enhancers and the replication origin (ZREs) and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter

    Could changing the DNA methylation landscape promote the destruction of Epstein-Barr virus-associated cancers?

    Get PDF
    DNA methylation at CpG motifs provides an epigenetic route to regulate gene expression. In general, an inverse correlation between DNA hypermethylation at CpG motifs and gene expression is observed. Epstein Barr-virus (EBV) infects people and the EBV genome resides in the nucleus where either its replication cycle initiates or it enters a long-term latency state where the viral genome becomes hypermethylated at CpG motifs. Viral gene expression shows a largely inverse correlation with DNA hypermethylation. DNA methylation occurs through the action of DNA methyl transferase enzymes: writer DNA methyl transferases add methyl groups to specific regions of unmethylated DNA; maintenance DNA methyl transferases reproduce the pattern of DNA methylation during genome replication. The impact of DNA methylation is achieved through the association of various proteins specifically with methylated DNA and their influence on gene regulation. DNA methylation can be changed through altering DNA methyl transferase activity or through the action of enzymes that further modify methylated CpG motifs. Azacytidine prodrugs that are incorporated into CpG motifs during DNA replication are recognized by DNA methyl transferases and block their function resulting in hypomethylation of DNA. EBV-associated cancers have hypermethylated viral genomes and many carcinomas also have highly hypermethylated cellular genomes. Decitabine, a member of the azacytidine prodrug family, reactivates viral gene expression and promotes the recognition of lymphoma cells by virus-specific cytotoxic T-cells. For EBV-associated cancers, the impact of decitabine on the cellular genome and the prospect of combining decitabine with other therapeutic approaches is currently unknown but exciting

    Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice

    Get PDF
    The mechanistic target of rapamycin (mTOR) signalling pathway plays a highly conserved role in aging; mice lacking ribosomal protein S6 kinase 1 (S6K1-/-) have extended lifespan and healthspan relative to wild type (WT) controls. Exactly how reduced mTOR signalling induces such effects is unclear, although preservation of stem cell function may be important. We show, using gene expression analyses, that there was a reduction in expression of cell cycle genes in young (12 week) and aged (80 week) S6K1-/- BM-derived c-Kit+ cells when compared to age-matched WT mice, suggesting that these cells are more quiescent in S6K1-/- mice. In addition, we investigated hematopoietic stem cell (HSC) frequency and function in young and aged S6K1-/- and WT mice. Young, but not aged, S6K1-/- mice had more LSK (lineage-, c-Kit+, Sca-1+) cells (% of bone marrow (BM)), including the most primitive long-term repopulating HSC (LT-HSC) relative to WT controls. Donor-derived engraftment of LT-HSCs in recipient mice was unaffected by genotype in young mice, but was enhanced in transplants using LT-HSCs derived from aged S6K1-/- mice. Our results are the first to provide evidence that age-associated HSC functional decline is ameliorated in a long-lived mTOR mutant mouse

    Identification of Epstein-Barr virus replication proteins in Burkitt’s lymphoma cells

    Get PDF
    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications

    Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The actin cytoskeleton responds quickly to diverse stimuli and plays numerous roles in cellular signalling, organelle motility and subcellular compartmentation during plant growth and development. Molecular and cell biological tools that can facilitate visualization of actin organization and dynamics in a minimally invasive manner are essential for understanding this fundamental component of the living cell.</p> <p>Results</p> <p>A novel, monomeric (m) Eos-fluorescent protein derived from the coral <it>Lobophyllia hemprichii </it>was assessed for its green to red photo-convertibility in plant cells by creating mEosFP-cytosolic. mEosFP was fused to the F-(filamentous)-Actin Binding Domain of the mammalian Talin gene to create mEosFP::FABDmTalin. Photo-conversion, visualization and colour quantification protocols were developed for EosFP targeted to the F-actin cytoskeleton. Rapid photo-conversion in the entire cell or in a region of interest was easily achieved upon illumination with an approximately 400 nm wavelength light beam using an epi-fluorescent microscope. Dual color imaging after photo-conversion was carried out using a confocal laser-scanning microscope. Time-lapse imaging revealed that although photo-conversion of single mEosFP molecules can be rapid in terms of live-cell imaging it involves a progressive enrichment of red fluorescent molecules over green species. The fluorescence of photo-converted cells thus progresses through intermediate shades ranging from green to red. The time taken for complete conversion to red fluorescence depends on protein expression level within a cell and the quality of the focusing lens used to deliver the illuminating beam. Three easily applicable methods for obtaining information on fluorescent intensity and colour are provided as a means of ensuring experimental repeatability and data quantification, when using mEosFP and similar photo-convertible proteins.</p> <p>Conclusion</p> <p>The mEosFP::FABD-mTn probe retains all the imaging qualities associated with the well tested GFP::mTn probe while allowing for non-invasive, regional photo-conversion that allows colour based discrimination within a living cell. Whereas a number of precautions should be exercised in dealing with photo-convertible probes, mEosFP::FABD-mTn is a versatile live imaging tool for dissecting the organization and activity of the actin cytoskeleton in plants.</p

    THE RELATIONSHIP BETWEEN ANKLE LAXITY AND FRONTAL PLANE ANGLES DURING NETBALL SPECIFIC TASKS: A PILOT STUDY

    Get PDF
    Ankle sprains are common in netball and, if quantified mechanical ankle laxity can be linked with ankle kinematics during common netball landing tasks, then preventative measures can be implemented to reduce the occurrence of such injuries. Four netball players had their ankle laxity measured with an ankle arthrometer and performed two landing tasks (a cutting manoeuvre and a linear running task involving a ball catch and sudden stop) within the 3D motion analysis laboratory. The participant with the highest arthrometry measured ankle laxity angle displayed the highest frontal plane range of motion during both landing tasks. A high correlation coefficient (R2=0.84) was found when comparing arthrometry measures with frontal plane range of motion during the cutting task. Although a promising relationship was observed, larger sample sizes are needed for more conclusive results

    Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1

    Get PDF
    Epstein-Barr virus (EBV; human herpesvirus 4) poses major clinical problems worldwide. Following primary infection, EBV enters a form of long-lived latency in B lymphocytes, expressing few viral genes, and it persists for the lifetime of the host with sporadic bursts of viral replication. The switch between latency and replication is governed by the action of a multifunctional viral protein Zta (also called BZLF1, ZEBRA, and Z). Using a global proteomic approach, we identified a host DNA damage repair protein that specifically interacts with Zta: 53BP1. 53BP1 is intimately connected with the ATM signal transduction pathway, which is activated during EBV replication. The interaction of 53BP1 with Zta requires the C-terminal ends of both proteins. A series of Zta mutants that show a wild-type ability to perform basic functions of Zta, such as dimer formation, interaction with DNA, and the transactivation of viral genes, were shown to have lost the ability to induce the viral lytic cycle. Each of these mutants also is compromised in the C-terminal region for interaction with 53BP1. In addition, the knockdown of 53BP1 expression reduced viral replication, suggesting that the association between Zta and 53BP1 is involved in the viral replication cycle

    Evaluation of a Prediction Protocol to Identify Potential Targets of Epigenetic Reprogramming by the Cancer Associated Epstein Barr Virus

    Get PDF
    Background Epstein Barr virus (EBV) infects the majority of the human population, causing fatal diseases in a small proportion in conjunction with environmental factors. Following primary infection, EBV remains latent in the memory B cell population for life. Recurrent reactivation of the virus occurs, probably due to activation of the memory B-lymphocytes, resulting in viral replication and re-infection of B-lymphocytes. Methylation of the viral DNA at CpG motifs leads to silencing of viral gene expression during latency. Zta, the key viral protein that mediates the latency/reactivation balance, interacts with methylated DNA. Zta is a transcription factor for both viral and host genes. A sub-set of its DNA binding sites (ZREs) contains a CpG motif, which is recognised in its methylated form. Detailed analysis of the promoter of the viral gene BRLF1 revealed that interaction with a methylated CpG ZRE (RpZRE3) is key to overturning the epigenetic silencing of the gene. Methodology and Principal Findings Here we question whether we can use this information to identify which host genes contain promoters with similar response elements. A computational search of human gene promoters identified 274 targets containing the 7-nucleotide RpZRE3 core element. DNA binding analysis of Zta with 17 of these targets revealed that the flanking context of the core element does not have a profound effect on the ability of Zta to interact with the methylated sites. A second juxtaposed ZRE was observed for one promoter. Zta was able to interact with this site, although co-occupancy with the RpZRE3 core element was not observed. Conclusions/Significance This research demonstrates 274 human promoters have the potential to be regulated by Zta to overturn epigenetic silencing of gene expression during viral reactivation from latency
    corecore