45 research outputs found

    Intermuscular Adipose Tissue Is Muscle Specific and Associated with Poor Functional Performance

    Get PDF
    Purpose. People with obesity, diabetes, and peripheral neuropathy have high levels of intermuscular adipose tissue (IMAT) volume which has been inversely related to physical function. We determined if IMAT is muscle specific, if calf IMAT is different between a healthy obese group (HO), a group with diabetes mellitus (D), and a group with diabetes mellitus and peripheral neuropathy (DN), and if IMAT volume or the ratio of IMAT/muscle volume is related to physical function in these groups. Methods. 10 healthy obese people, 11 with type 2 diabetes, 24 with diabetes and peripheral neuropathy, had assessments of muscle morphology, physical function and muscle performance. Results. The gastrocnemius muscle had a higher ratio of IMAT/muscle volume than any other muscle or compartment. There were no differences between groups in calf muscle or IMAT volumes. Calf IMAT was inversely related to physical performance on the 6-minute walk test (r = −0.47) and physical performance test (r = −0.36). IMAT/muscle volume was inversely related to physical performance (PPT, r = −0.44; 6 MW r = −0.48; stair power, r = −0.30). Conclusions. IMAT accumulation varies in calf muscles, is highest in the gastrocnemius muscle, and is associated with poor physical performance

    Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography

    Get PDF
    BACKGROUND: Surgical treatment and clinical management of foot pathology requires accurate, reliable assessment of foot deformities. Foot and ankle deformities are multi-planar and therefore difficult to quantify by standard radiographs. Three-dimensional (3D) imaging modalities have been used to define bone orientations using inertial axes based on bone shape, but these inertial axes can fail to mimic established bone angles used in orthopaedics and clinical biomechanics. To provide improved clinical relevance of 3D bone angles, we developed techniques to define bone axes using landmarks on quantitative computed tomography (QCT) bone surface meshes. We aimed to assess measurement precision of landmark-based, 3D bone-to-bone orientations of hind foot and lesser tarsal bones for expert raters and a template-based automated method. METHODS: Two raters completed two repetitions each for twenty feet (10 right, 10 left), placing anatomic landmarks on the surfaces of calcaneus, talus, cuboid, and navicular. Landmarks were also recorded using the automated, template-based method. For each method, 3D bone axes were computed from landmark positions, and Cardan sequences produced sagittal, frontal, and transverse plane angles of bone-to-bone orientations. Angular reliability was assessed using intraclass correlation coefficients (ICCs) and the root mean square standard deviation (RMS-SD) for intra-rater and inter-rater precision, and rater versus automated agreement. RESULTS: Intra- and inter-rater ICCs were generally high (≥ 0.80), and the ICCs for each rater compared to the automated method were similarly high. RMS-SD intra-rater precision ranged from 1.4 to 3.6° and 2.4 to 6.1°, respectively, for the two raters, which compares favorably to uni-planar radiographic precision. Greatest variability was in Navicular: Talus sagittal plane angle and Cuboid: Calcaneus frontal plane angle. Precision of the automated, atlas-based template method versus the raters was comparable to each rater’s internal precision. CONCLUSIONS: Intra- and inter-rater precision suggest that the landmark-based methods have adequate test-retest reliability for 3D assessment of foot deformities. Agreement of the automated, atlas-based method with the expert raters suggests that the automated method is a valid, time-saving technique for foot deformity assessment. These methods have the potential to improve diagnosis of foot and ankle pathologies by allowing multi-planar quantification of deformities

    Impact of foot progression angle modification on plantar loading in individuals with diabetes mellitus and peripheral neuropathy

    Get PDF
    AIMS: To determine if participants can reduce foot progression angle (FPA), and if FPA reduction decreases regional plantar stresses and forces in individuals with diabetes. METHODS: DESIGN: Three-group cross-sectional design with repeated measures. SUBJECTS: twenty-eight participants either with diabetes mellitus (DM), diabetes and peripheral neuropathy with (DMPN+NPU) or without a prior history of ulceration (DMPN−NPU) were studied. INTERVENTION: Participants were first instructed to walk over a 3.6 m walkway at their preferred FPA, and then to walk with their foot aligned parallel with the line of gait progression at their self-selected speed. Dynamic plantar kinetics in six masked regions were collected using an EMED-st-P-2 pedobarograph. MAIN MEASURES: Primary outcome measures were FPA, peak plantar pressure (PPP), and force-time integral (FTI). A repeated measures ANOVA was conducted to determine group differences in FPA for both walking conditions. Regional differences in PPPs and FTIs between preferred and corrected walking conditions were analyzed using repeated measures ANCOVA. RESULTS: Participants showed a reduction in FPA magnitude on the ‘Involved’ foot between the preferred and corrected walking conditions (p<0.01). There were no differences in PPPs or FTIs in any mask between walking conditions (p>0.05). CONCLUSION: Results from this investigation offer important evidence that people with diabetes can modify their FPA with a simple intervention of visual and verbal cueing. Future research should examine if gait retraining strategies in regular footwear more effectively offload areas of elevated regional plantar stresses and forces in adults with diabetes mellitus and peripheral neuropathy

    Neuropathic midfoot deformity: Associations with ankle and subtalar joint motion

    Get PDF
    BACKGROUND: Neuropathic deformities impair foot and ankle joint mobility, often leading to abnormal stresses and impact forces. The purpose of our study was to determine differences in radiographic measures of hind foot alignment and ankle joint and subtalar joint motion in participants with and without neuropathic midfoot deformities and to determine the relationships between radiographic measures of hind foot alignment to ankle and subtalar joint motion in participants with and without neuropathic midfoot deformities. METHODS: Sixty participants were studied in three groups. Forty participants had diabetes mellitus (DM) and peripheral neuropathy (PN) with 20 participants having neuropathic midfoot deformity due to Charcot neuroarthropathy (CN), while 20 participants did not have deformity. Participants with diabetes and neuropathy with and without deformity were compared to 20 young control participants without DM, PN or deformity. Talar declination and calcaneal inclination angles were assessed on lateral view weight bearing radiograph. Ankle dorsiflexion, plantar flexion and subtalar inversion and eversion were assessed by goniometry. RESULTS: Talar declination angle averaged 34±9, 26±4 and 23±3 degrees in participants with deformity, without deformity and young control participants, respectively (p< 0.010). Calcaneal inclination angle averaged 11±10, 18±9 and 21±4 degrees, respectively (p< 0.010). Ankle plantar flexion motion averaged 23±11, 38±10 and 47±7 degrees (p<0.010). The association between talar declination and calcaneal inclination angles with ankle plantar flexion range of motion is strongest in participants with neuropathic midfoot deformity. Participants with talonavicular and calcaneocuboid dislocations result in the most severe restrictions in ankle joint plantar flexion and subtalar joint inversion motions. CONCLUSIONS: An increasing talar declination angle and decreasing calcaneal inclination angle is associated with decreases in ankle joint plantar flexion motion in individuals with neuropathic midfoot deformity due to CN that may contribute to excessive stresses and ultimately plantar ulceration of the midfoot

    Weight loss, exercise, or both and physical function in obese older adults

    Get PDF
    BACKGROUND: Obesity exacerbates the age-related decline in physical function and causes frailty in older adults; however, the appropriate treatment for obese older adults is controversial. METHODS: In this 1-year, randomized, controlled trial, we evaluated the independent and combined effects of weight loss and exercise in 107 adults who were 65 years of age or older and obese. Participants were randomly assigned to a control group, a weightmanagement (diet) group, an exercise group, or a weight-management-plus-exercise (diet–exercise) group. The primary outcome was the change in score on the modified Physical Performance Test. Secondary outcomes included other measures of frailty, body composition, bone mineral density, specific physical functions, and quality of life. RESULTS: A total of 93 participants (87%) completed the study. In the intention-to-treat analysis, the score on the Physical Performance Test, in which higher scores indicate better physical status, increased more in the diet–exercise group than in the diet group or the exercise group (increases from baseline of 21% vs. 12% and 15%, respectively); the scores in all three of those groups increased more than the scores in the control group (in which the score increased by 1%) (P<0.001 for the between-group differences). Moreover, the peak oxygen consumption improved more in the diet–exercise group than in the diet group or the exercise group (increases of 17% vs. 10% and 8%, respectively; P<0.001); the score on the Functional Status Questionnaire, in which higher scores indicate better physical function, increased more in the diet–exercise group than in the diet group (increase of 10% vs. 4%, P<0.001). Body weight decreased by 10% in the diet group and by 9% in the diet–exercise group, but did not decrease in the exercise group or the control group (P<0.001). Lean body mass and bone mineral density at the hip decreased less in the diet–exercise group than in the diet group (reductions of 3% and 1%, respectively, in the diet–exercise group vs. reductions of 5% and 3%, respectively, in the diet group; P<0.05 for both comparisons). Strength, balance, and gait improved consistently in the diet–exercise group (P<0.05 for all comparisons). Adverse events included a small number of exercise-associated musculoskeletal injuries. CONCLUSIONS: These findings suggest that a combination of weight loss and exercise provides greater improvement in physical function than either intervention alone

    Progression of foot deformity in charcot neuropathic osteoarthropathy

    Get PDF
    BACKGROUND: Charcot neuropathic osteoarthropathy associated foot deformity can result in joint instability, ulceration, and even amputation. The purpose of the present study was to follow patients with and without active Charcot osteoarthropathy for as long as two years to examine the magnitude and timing of foot alignment changes. METHODS: We studied fifteen subjects with Charcot osteoarthropathy and nineteen subjects with diabetes mellitus and peripheral neuropathy without Charcot osteoarthropathy for one year; eight of the subjects with osteoarthropathy and five of the subjects with diabetes and peripheral neuropathy were followed for two years. Bilateral weight-bearing radiographs of the foot were made at baseline for all subjects, with repeat radiographs being made at six months for the osteoarthropathy group and at one and two years for both groups. Radiographic measurements included the Meary angle, cuboid height, calcaneal pitch, and hindfoot-forefoot angle. RESULTS: The Meary angle, cuboid height, and calcaneal pitch worsened in feet with Charcot osteoarthropathy over one year as compared with the contralateral, uninvolved feet and feet in patients with diabetes and peripheral neuropathy. Cuboid height continued to worsen over the two-year follow-up in the feet with Charcot osteoarthropathy. These feet also had a greater change in the hindfoot-forefoot angle at one year as compared with the feet in patients with diabetes and peripheral neuropathy and at two years as compared with the contralateral, uninvolved feet. CONCLUSIONS: In patients with Charcot neuropathic osteoarthropathy, radiographic alignment measurements demonstrate the presence of foot deformity at the time of the initial clinical presentation and evidence of progressive changes over the first and second years. The six-month data suggest worsening of medial column alignment prior to lateral column worsening. This radiographic evidence of worsening foot alignment over time supports the need for aggressive intervention (conservative bracing or surgical fixation) to attempt to prevent limb-threatening complications. LEVEL OF EVIDENCE: Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence

    Effect of aerobic or resistance exercise, or both, on intermuscular and visceral fat and physical and metabolic function in older adults with obesity while dieting

    Get PDF
    BACKGROUND: Obesity exacerbates age-related effects on body composition and physical and metabolic function. Which exercise mode is most effective in mitigating these deleterious changes in dieting older adults with obesity is unknown. METHODS: In a randomized controlled trial, we performed a head-to-head comparison of aerobic (AEX), resistance (REX), or combination (COMB) exercise during matched ~10% weight loss in 160 obese older adults. Prespecified analyses compared 6-month changes in intermuscular adipose tissue (IMAT) and visceral adipose tissue (VAT) assessed using MRI, insulin sensitivity index (ISI) by oral glucose tolerance test, physical function using Modified Physical Performance Test (PPT), VO2peak, gait speed, and knee strength by dynamometry. RESULTS: IMAT and VAT decreased more in COMB than AEX and REX groups (IMAT; -41% vs -28% and -23% and VAT: -36% vs -19% and -21%; p = .003 to .01); IMAT and VAT decreased in all groups more than control (between-group p \u3c .001). ISI increased more in COMB than AEX and REX groups (86% vs 50% and 39%; p = .005 to .03). PPT improved more in COMB than AEX and REX groups, while VO2peak improved more in COMB and AEX than REX group (all p \u3c .05). Knee strength improved more in COMB and REX than AEX group (all p \u3c .05). Changes in IMAT and VAT correlated with PPT (r = -0.28 and -0.39), VO2peak (r = -0.49 and -0.52), gait speed (r = -0.25 and -0.36), and ISI (r = -0.49 and -0.52; all p \u3c .05). CONCLUSIONS: Weight loss plus combination aerobic and resistance exercise was most effective in improving ectopic fat deposition and physical and metabolic function in older adults with obesity
    corecore