22 research outputs found

    A Paradox of State-Dependent Diffusion and How to Resolve It

    Full text link
    Consider a particle diffusing in a confined volume which is divided into two equal regions. In one region the diffusion coefficient is twice the value of the diffusion coefficient in the other region. Will the particle spend equal proportions of time in the two regions in the long term? Statistical mechanics would suggest yes, since the number of accessible states in each region is presumably the same. However, another line of reasoning suggests that the particle should spend less time in the region with faster diffusion, since it will exit that region more quickly. We demonstrate with a simple microscopic model system that both predictions are consistent with the information given. Thus, specifying the diffusion rate as a function of position is not enough to characterize the behaviour of a system, even assuming the absence of external forces. We propose an alternative framework for modelling diffusive dynamics in which both the diffusion rate and equilibrium probability density for the position of the particle are specified by the modeller. We introduce a numerical method for simulating dynamics in our framework that samples from the equilibrium probability density exactly and is suitable for discontinuous diffusion coefficients.Comment: 21 pages, 6 figures. Second round of revisions. This is the version that will appear in Proc Roy So

    Statistical properties of Lorenz like flows, recent developments and perspectives

    Full text link
    We comment on mathematical results about the statistical behavior of Lorenz equations an its attractor, and more generally to the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statisitcal behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated to the existence of physical measures: \emph{in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure}. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors.Comment: 40 pages; 10 figures; Keywords: sensitive dependence on initial conditions, physical measure, singular-hyperbolicity, expansiveness, robust attractor, robust chaotic flow, positive Lyapunov exponent, large deviations, hitting and recurrence times. Minor typos corrected and precise acknowledgments of financial support added. To appear in Int J of Bif and Chaos in App Sciences and Engineerin

    Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

    Full text link
    Dynamical equations are formulated and a numerical study is provided for self-oscillatory model systems based on the triple linkage hinge mechanism of Thurston -- Weeks -- Hunt -- MacKay. We consider systems with holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.Comment: 30 pages, 18 figure

    Structure of shocks in Burgers turbulence with L\'evy noise initial data

    Full text link
    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by L\'evy noise, or equivalently when the initial potential is a two-sided L\'evy process ψ0\psi_0. When ψ0\psi_0 is abrupt in the sense of Vigon or has bounded variation with lim suph0h2ψ0(h)=\limsup_{|h| \downarrow 0} h^{-2} \psi_0(h) = \infty, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ0\psi_0 is abrupt we show that the shock structure is discrete. When ψ0\psi_0 is eroded we show that there are no rarefaction intervals.Comment: 22 page

    Escape Rates and Physically Relevant Measures for Billiards with Small Holes

    Get PDF
    We study the billiard map corresponding to a periodic Lorentz gas in 2-dimensions in the presence of small holes in the table. We allow holes in the form of open sets away from the scatterers as well as segments on the boundaries of the scatterers. For a large class of smooth initial distributions, we establish the existence of a common escape rate and normalized limiting distribution. This limiting distribution is conditionally invariant and is the natural analogue of the SRB measure of a closed system. Finally, we prove that as the size of the hole tends to zero, the limiting distribution converges to the smooth invariant measure of the billiard map.Comment: 39 pages, 4 figure
    corecore