219 research outputs found

    Decreasing physical and verbal aggression in a brain injured nursing home resident

    Get PDF
    Following a traumatic brain injury, patients often suffer a series of psychological and psychiatric sequalae. This study presents the case of Mr. K, a 52-year-old brain-injured nursing home resident who exhibited problematic physical aggression and verbal abuse toward staff and residents. His problem behaviors were intertwined with an ethical issue involving a heterosexual relationship with another resident who also was brain injured. Following a functional assessment of antecedents and consequences, a differential reinforcement of other behavior (DRO) schedule was implemented. Specifically, the resident was rewarded with short-term and long-term reinforcers following periods of time during which behaviors other than the target behavior were emitted. Although the behavior plan was successful, it resulted in a more noticeable decrease in physically aggressive behaviors than verbally abusive behaviors. Implications include increasing awareness of use of behavior plans in nursing homes and of ethical and behavioral issues associated with sexuality among nursing home residents

    Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    Get PDF
    The first spectroscopy of excited states in Ni52 (Tz=-2) and Co51 (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement. ďż˝ 2013 American Physical Society

    Amorphization Threshold in Si-Implanted Strained Sige Alloy Layers

    Get PDF
    The authors have examined the damage produced by Si-ion implantation into strained Si{sub 1{minus}x}Ge{sub x} epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si{sub 1{minus}x}Ge{sub x} (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si{sub 1{minus}x}Ge{sub x}, and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer

    A system of ODEs for a Perturbation of a Minimal Mass Soliton

    Full text link
    We study soliton solutions to a nonlinear Schrodinger equation with a saturated nonlinearity. Such nonlinearities are known to possess minimal mass soliton solutions. We consider a small perturbation of a minimal mass soliton, and identify a system of ODEs similar to those from Comech and Pelinovsky (2003), which model the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, which is in accord with the conclusions of Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a soliton structure, a generic initial perturbation oscillates around the stable family of solitons. For initial data which is expected to disperse, the finite dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Minimal to no transfer of certolizumab pegol into breast milk: Results from CRADLE, a prospective, postmarketing, multicentre, pharmacokinetic study

    Get PDF
    Background Women with chronic inflammatory diseases face uncertainty regarding the safety of biologics during breast feeding. CRADLE was the first industry-sponsored study to evaluate certolizumab pegol (CZP) concentrations in human breast milk and estimate average daily infant dose (ADID) of maternal CZP. Methods CRADLE (NCT02154425) was a pharmacokinetic study of lactating mothers receiving CZP. After ≥3 CZP doses, breast milk samples were collected across one dosing period (14 days for 200 mg every 2 weeks [Q2W]; 28 days for 400 mg every 4 weeks [Q4W]). Optimal analytical methods were developed to determine CZP and polyethylene glycol (PEG) levels in breast milk. ADID and relative infant dose (RID) were estimated. Safety events in mothers and infants were assessed. Results 19 CZP-Treated mothers were screened; 17 entered the sampling period: 16 on 200 mg Q2W, 1 on 400 mg Q4W. 77/137 (56%) breast milk samples had no measurable CZP. For 4/17 mothers, all samples were below the lower limit of quantification (LLOQ). Estimated ADID was 0-0.0104 mg/kg/day; median RID: 0.15%. PEG was undetectable in 134/137 samples (results could not be determined in three samples). Infants of CZP-exposed mothers had a safety profile consistent with that of unexposed similar-Age infants. Conclusion When quantifiable, CZP concentrations were <3× LLOQ (<1% plasma concentration observed with therapeutic dose), indicating no/minimal CZP transfer from plasma to breast milk. RID was 0.15% of maternal dose; <10% is considered unlikely to be of clinical concern. No PEG transfer was observed. CZP absorption by infants via breast milk is unlikely due to its low oral bioavailability and Fc-Â-free molecular structure. These findings are reassuring and support continuation of CZP treatment during breast feeding. Trial registration number NCT02154425; Results

    Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns

    Full text link
    Abstract. The field of bioimage informatics concerns the development and use of methods for computational analysis of biological images. Traditionally, analysis of such images has been done manually. Manual annotation is, however, slow, expensive, and often highly variable from one expert to another. Furthermore, with modern automated microscopes, hundreds to thousands of images can be collected per hour, making manual analysis infeasible. This field borrows from the pattern recognition and computer vision literature (which contain many techniques for image processing and recognition), but has its own unique challenges and tradeoffs. Fluorescence microscopy images represent perhaps the largest class of biological images for which automation is needed. For this modality, typical problems include cell segmentation, classification of phenotypical response, or decisions regarding differentiated responses (treatment vs. control setting). This overview focuses on the problem of subcellular location determination as a running example, but the techniques discussed are often applicable to other problems.

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale
    • …
    corecore