5 research outputs found

    Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens

    Get PDF
    Drug Hypersensitivity reactions can be distinguished in adverse drug events and adverse drug reactions. They represent a major problem in the medical scheme, since they are often underestimated. Pharmacogenetic analysis demonstrated significant associations between emerging hypersensitivity reactions and distinct genes of the HLA complex. HLA-mediated hypersensitivity reactions particularly affect skin and liver, however, impairment of the bone marrow and kidney function could also be observed. These life threatening medical conditions can be attributed to the activation of autologous drug-specific T-cells. Severe drug hypersensitivity reactions that resemble acute GvHD are linked to certain specific HLA alleles. The most common hypersensitivity reactions occur after the treatment of HLA-B*57:01+ HIV patients with abacavir and HLA-A*31:01+ or B*15:02+ epileptic patients with carbamazepine (CBZ)

    Peptide Presentation Is the Key to Immunotherapeutical Success

    Get PDF
    Positive and negative selection in the thymus relies on T-cell receptor recognition of peptides presented by HLA molecules and determines the repertoire of T cells. Immune competent T-lymphocytes target cells display nonself or pathogenic peptides in complex with their cognate HLA molecule. A peptide passes several selection processes before being presented in the peptide binding groove of an HLA molecule; here the sequence of the HLA molecule’s heavy chain determines the mode of peptide recruitment. During inflammatory processes, the presentable peptide repertoire is obviously altered compared to the healthy state, while the peptide loading pathway undergoes modifications as well. The presented peptides dictate the fate of the HLA expressing cell through their (1) sequence, (2) topology, (3) origin (self/nonself). Therefore, the knowledge about peptide competition and presentation in the context of alloreactivity, infection or pathogenic invasion is of enormous significance. Since in adoptive cellular therapies transferred cells should exclusively target peptide-HLA complexes they are primed for, one of the most crucial questions remains at what stage of viral infection viral peptides are presented preferentially over self-peptides. The systematic analyzation of peptide profiles under healthy or pathogenic conditions is the key to immunological success in terms of personalized therapeutics

    Small Molecule/HLA Complexes Alter the Cellular Proteomic Content

    Get PDF
    A medical product usually undergoes several clinical trials, including the testing of volunteers. Nevertheless, genomic variances in the patients cannot be considered comprehensively and adverse drug reactions (ADRs) are missed or misinterpreted during trials. Despite the relation between ADRs and human leukocyte antigen (HLA) molecules being known for several years, the fundamental molecular mechanisms leading to the development of such an ADR often remains only vaguely solved. The analysis of the peptidome can reveal changes in peptide presentation post-drug treatment and explain, for example, the severe cutaneous ADR in HLA-B*57:01-positive patients treated with the antiretroviral drug abacavir in anti-HIV therapy. However, as seen in the biophysical features of HLA-A*31:01-presented peptides, treatment with the anticonvulsant carbamazepine only induces minor changes. Since the binding of a drug to a certain HLA allelic variant is extremely distinct, the influence of the small molecule/protein complex on the proteomic content of a cell becomes clear. A sophisticated methodology elucidating the impact of drug treatment on cells is a full proteome analysis. The principal component analysis of abacavir, carbamazepine or carbamazepine-10,11-epoxid treated cells reveals clear clustering of the drug-treated and the untreated samples that express the respective HLA molecule. Following drug treatment, several proteins were shown to be significantly up- or downregulated. Proteomics and peptidomics are valuable tools to differential clinical outcomes of patients with the same HLA phenotype

    NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain

    No full text
    Natural killer (NK) cell therapies are a tool to antagonize a dysfunctional immune system. NK cells recognize malignant cells, traffic to a tumor location, and infiltrate the solid tumor. The immune checkpoint molecule human leukocyte antigen (HLA)-G is upregulated on malignant cells but not on healthy surrounding cells, the requirement of understanding the basis of receptor mediated events at the HLA-G/NK cell interface becomes obvious. The NK cell receptors ILT2 and KIR2DL4 have been described to bind to HLA-G; however, their differential function and expression levels on NK cell subsets suggest the existence of an unreported receptor. Here, we performed a ligand-based receptor capture on living cells utilizing sHLA-G*01:01 molecules coupled to TriCEPS and bound to NK cells followed by mass spectrometric analyses. We could define NKG2A/CD94 as a cognate receptor of HLA-G. To verify the results, we used the reciprocal method by expressing recombinant soluble heterodimeric NKG2A/CD94 molecules and used them to target HLA-G*01:01 expressing cells. NKG2A/CD94 could be confirmed as an immune receptor of HLA-G*01:01. Despite HLA-G is marginal polymorphic, we could previously demonstrate that the most common allelic subtypes HLA-G*01:01/01:03 and 01:04 differ in peptide repertoire, their engagement to NK cells, their catalyzation of dNK cell proliferation and their impact on NK cell development. Continuing these studies with regard to NKG2A/CD94 engagement we engineered recombinant single antigen presenting K562 cells and targeted the surface expressed HLA-G*01:01, 01:03 or 01:04 molecules with NKG2A/CD94. Specificity and sensitivity of HLA-G*01:04/NKG2A/CD94 engagement could be significantly verified. The binding affinity decreases when using K562-G*01:03 or K562-G*01:01 cells as targets. These results demonstrate that the ligand-receptor assignment between HLA-G and NKG2A/CD94 is dependent of the amino acid composition in the HLA-G heavy chain. Understanding the biophysical basis of receptor-mediated events that lead to NK cell inhibition would help to remove non-tumor reactive cells and support personalized mild autologous NK cell therapies
    corecore