8 research outputs found

    bFGF blockade reduces intraplaque angiogenesis and macrophage infiltration in atherosclerotic vein graft lesions in ApoE3*Leiden mice

    Get PDF
    Intraplaque angiogenesis increases the chance of unstable atherosclerotic plaque rupture and thrombus formation leading to myocardial infarction. Basic Fibroblast Growth Factor (bFGF) plays a key role in angiogenesis and inflammation and is involved in the pathogenesis of atherosclerosis. Therefore, we aim to test K5, a small molecule bFGF-inhibitor, on remodelling of accelerated atherosclerotic vein grafts lesions in ApoE3*Leiden mice. K5-mediated bFGF-signalling blockade strongly decreased intraplaque angiogenesis and intraplaque hemorrhage. Moreover, it reduced macrophage infiltration in the lesions by modulating CCL2 and VCAM1 expression. Therefore, K5 increases plaque stability. To study the isolated effect of K5 on angiogenesis and SMCs-mediated intimal hyperplasia formation, we used an in vivo Matrigel-plug mouse model that reveals the effects on in vivo angiogenesis and femoral artery cuff model to exclusively looks at SMCs. K5 drastically reduced in vivo angiogenesis in the matrigel plug model while no effect on SMCs migration nor proliferation could be seen in the femoral artery cuff model. Moreover, in vitro K5 impaired endothelial cells functions, decreasing migration, proliferation and tube formation. Our data show that K5-mediated bFGF signalling blockade in hypercholesterolemic ApoE3*Leiden mice reduces intraplaque angiogenesis, haemorrhage and inflammation. Therefore, K5 is a promising candidate to stabilize advanced atherosclerotic plaques.Vascular Surger

    Adenosine-to-inosine editing of vasoactive microRNAs alters their targetome and function in ischemia

    Get PDF
    Adenosine-to-inosine (A-to-I) editing in the seed sequence of microRNAs can shift the microRNAs' targetomes and thus their function. Using public RNA-sequencing data, we identified 35 vasoactive microRNAs that are A-to-I edited. We quantified A-to-I editing of the primary (pri-)microRNAs in vascular fibroblasts and endothelial cells. Nine pri-microRNAs were indeed edited, and editing consistently increased under ischemia. We determined mature microRNA editing for the highest expressed microRNAs, i.e., miR-376a-3p, miR-376c3p, miR-381-3p, and miR-411-5p. All four mature microRNAs were edited in their seed sequence. We show that both ADAR1 and ADAR2 (adenosine deaminase acting on RNA 1 and RNA 2) can edit pri-microRNAs in a microRNA-specific manner. MicroRNA editing also increased under ischemia in vivo in a murine hindlimb ischemia model and ex vivo in human veins. For each edited microRNA, we confirmed a shift in targetome. Expression of the edited microRNA targetomes, not the wild type targetomes, was downregulated under ischemia in vivo. Furthermore, microRNA editing enhanced angiogenesis in vitro and ex vivo. In conclusion, we show that microRNA A-to-I editing is a widespread phenomenon, induced by ischemia. Each editing event results in a novel microRNA with a unique targetome, leading to increased angiogenesis.Vascular Surger

    CD8+ T Cells Protect During Vein Graft Disease Development

    No full text
    Aims: Vein grafts are frequently used conduits for arterial reconstruction in patients with cardiovascular disease. Unfortunately, vein graft disease (VGD) causes diminished patency rates. Innate immune system components are known to contribute to VGD. However, the role of T cells has yet to be established. The purpose of this study was to investigate the role of T cells and T cell activation pathways via the T cell receptor (TCR), co-stimulation and bystander effect in VGD.Methods and results: Here, we show upon vein graft surgery in mice depleted of CD4+ T cells or CD8+ T cells, that CD8+ T cells are locally activated and have a major protective role for vein graft patency. In presence of CD8+ T cells vein grafts appear patent while CD8+ T cell depletion results in occluded vein grafts with increases apoptosis. Importantly, the protective effect of CD8+ T cells in VGD development was TCR and co-stimulation independent. This was demonstrated in vein grafts of OT-I mice, CD70(-/-), CD80/86(-/-), and CD70/80/86(-/-) mice compared to C57BL/6 mice. Interestingly, cytokines including IL-15, IL-18, IL-33, and TNF are up-regulated in vein grafts. These cytokines are co-operatively capable to activate CD8+ T cells in a bystander-mediated fashion, in contrast to CD4+ T cells.Conclusions: T cells are modulators of VGD with a specific protective role of CD8+ T cells, which are locally activated in vein grafts. CD8+ T cells may protect against occlusive lesions by providing survival signals, and concert their protection independent of TCR and co-stimulation signaling

    IRF3 and IRF7 mediate neovascularization via inflammatory cytokines

    No full text
    Objective: To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization.Methods: Unilateral hind limb ischaemia was induced in Irf3(-/-),Irf7(-/-) and C57BL/6 mice by ligation of the left common femoral artery. Post-ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation.Results: Post-ischaemic blood flow recovery was decreased in Irf3(-/- )and Irf7(-/-) mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3(-/-) and Irf7(-/-) mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3(-/-) and Irf7(-/-) mice at t28. In addition, mRNA expression levels of pro-inflammatory cytokines (tnf alpha, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of irf3(-/-) and Irf7(-/-) mice compared to C57BL/6 mice.Conclusion: Deficiency of IRF3 and IRF7 results in impaired post-ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.Cardiolog
    corecore