14,022 research outputs found
Linear -positive sets and their polar subspaces
In this paper, we define a Banach SNL space to be a Banach space with a
certain kind of linear map from it into its dual, and we develop the theory of
linear -positive subsets of Banach SNL spaces with Banach SNL dual spaces.
We use this theory to give simplified proofs of some recent results of
Bauschke, Borwein, Wang and Yao, and also of the classical Brezis-Browder
theorem.Comment: 11 pages. Notational changes since version
Quantum Phase Transitions in Bosonic Heteronuclear Pairing Hamiltonians
We explore the phase diagram of two-component bosons with Feshbach resonant
pairing interactions in an optical lattice. It has been shown in previous work
to exhibit a rich variety of phases and phase transitions, including a
paradigmatic Ising quantum phase transition within the second Mott lobe. We
discuss the evolution of the phase diagram with system parameters and relate
this to the predictions of Landau theory. We extend our exact diagonalization
studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising
critical exponents for the longitudinal and transverse magnetic
susceptibilities within the second Mott lobe. The numerical results for the
ground state energy and transverse magnetization are in good agreement with
exact solutions of the Ising model in the thermodynamic limit. We also provide
details of the low-energy spectrum, as well as density fluctuations and
superfluid fractions in the grand canonical ensemble.Comment: 11 pages, 14 figures. To appear in Phys. Rev.
Feshbach Resonance in Optical Lattices and the Quantum Ising Model
Motivated by experiments on heteronuclear Feshbach resonances in Bose
mixtures, we investigate s-wave pairing of two species of bosons in an optical
lattice. The zero temperature phase diagram supports a rich array of superfluid
and Mott phases and a network of quantum critical points. This topology reveals
an underlying structure that is succinctly captured by a two-component Landau
theory. Within the second Mott lobe we establish a quantum phase transition
described by the paradigmatic longitudinal and transverse field Ising model.
This is confirmed by exact diagonalization of the 1D bosonic Hamiltonian. We
also find this transition in the homonuclear case.Comment: 5 pages, 4 figure
Learning Visual Question Answering by Bootstrapping Hard Attention
Attention mechanisms in biological perception are thought to select subsets
of perceptual information for more sophisticated processing which would be
prohibitive to perform on all sensory inputs. In computer vision, however,
there has been relatively little exploration of hard attention, where some
information is selectively ignored, in spite of the success of soft attention,
where information is re-weighted and aggregated, but never filtered out. Here,
we introduce a new approach for hard attention and find it achieves very
competitive performance on a recently-released visual question answering
datasets, equalling and in some cases surpassing similar soft attention
architectures while entirely ignoring some features. Even though the hard
attention mechanism is thought to be non-differentiable, we found that the
feature magnitudes correlate with semantic relevance, and provide a useful
signal for our mechanism's attentional selection criterion. Because hard
attention selects important features of the input information, it can also be
more efficient than analogous soft attention mechanisms. This is especially
important for recent approaches that use non-local pairwise operations, whereby
computational and memory costs are quadratic in the size of the set of
features.Comment: ECCV 201
Class struggles in America
https://stars.library.ucf.edu/prism/1082/thumbnail.jp
Tail States in Disordered Superconductors with Magnetic Impurities: the Unitarity Limit
When subject to a weak magnetic impurity distribution, the order parameter
and quasi-particle energy gap of a weakly disordered bulk s-wave superconductor
are suppressed. In the Born scattering limit, recent investigations have shown
that `optimal fluctuations' of the random impurity potential can lead to the
nucleation of `domains' of localised states within the gap region predicted by
the conventional Abrikosov-Gor'kov mean-field theory, rendering the
superconducting system gapless at any finite impurity concentration. By
implementing a field theoretic scheme tailored to the weakly disordered system,
the aim of the present paper is to extend this analysis to the consideration of
magnetic impurities in the unitarity scattering limit. This investigation
reveals that the qualitative behaviour is maintained while the density of
states exhibits a rich structure.Comment: 18 pages AMSLaTeX (with LaTeX2e), 6 eps figure
Diseases of winter linseed : occurrence, effects and importance
In 1998, a survey of the incidence and severity of diseases was carried out on 30 crops of winter linseed at early flowering and again at crop maturity. Five crops each were selected in south west, east, east Midlands, west Midlands and north of England and from Scotland. Crops were predominantly cv. Oliver (90% crops), grown from certified seed (83%) and sown in September (97%). Pasmo (Mycosphaerella) was the most important disease, affecting leaves of 73% crops at early flowering and 90% crops at maturity. Powdery mildew (70% crops), Alternaria (30% crops) on leaves and Botrytis on capsules (70% crops) were also common. Regional differences were apparent for powdery mildew, which was present in all regions except the southwest, whilst Alternaria predominated in the Midlands. Half of the crops surveyed had received fungicide sprays, but this appeared to have made limited impact on disease severity. Pasmo is a new threat to UK linseed crops and this raises concerns about the threat it poses to spring linsee
Polaritons and Pairing Phenomena in Bose--Hubbard Mixtures
Motivated by recent experiments on cold atomic gases in ultra high finesse
optical cavities, we consider the problem of a two-band Bose--Hubbard model
coupled to quantum light. Photoexcitation promotes carriers between the bands
and we study the non-trivial interplay between Mott insulating behavior and
superfluidity. The model displays a global U(1) X U(1) symmetry which supports
the coexistence of Mott insulating and superfluid phases, and yields a rich
phase diagram with multicritical points. This symmetry property is shared by
several other problems of current experimental interest, including
two-component Bose gases in optical lattices, and the bosonic BEC-BCS crossover
problem for atom-molecule mixtures induced by a Feshbach resonance. We
corroborate our findings by numerical simulations.Comment: 4 pages, 3 figure
Critical States in Disordered Superconducting Films
When subject to a pair-breaking perturbation, the pairing susceptibility of a
disordered superconductor exhibits substantial long-ranged mesoscopic
fluctuations. Focusing on a thin film subject to a parallel magnetic field, it
is proposed that the quantum phase transition to the bulk superconducting
condensate may be preempted by the formation of a glass-like phase with
multi-fractal correlations of a complex order parameter. Although not
universal, we argue that such behavior may be a common feature of quantum
critical phenomena in disordered environments.Comment: 7 pages, 1 eps figur
- …