974 research outputs found

    Can a spontaneous collapse in flavour oscillations be tested at KLOE?

    Get PDF
    Why do we never see a table in a superposition of here and there? This problem gets a solution by so called collapse models assuming the collapse as a genuinely physical process. Here we consider two specific collapse models and apply them to systems at high energies, i.e. flavour oscillating neutral meson systems. We find on one hand a potentially new interpretation of the decay rates introduced by hand in the standard formalism and on the other hand that these systems at high energies constrain by experimental data the possible collapse scenarios.Comment: To appear in the proceedings of the KLOE-2 Workshop on e+e- collision physics at 1 GeV, 26-28 October 2016, INFN - Laboratori Nazionali di Frascati, Ital

    Dynamics of confined gluons

    Full text link
    Propagation of gluons in the confining vacuum is studied in the framework of the background perturbation theory, where nonperturbative background contains confining correlators. Two settings of the problem are considered. In the first the confined gluon is evolving in time together with static quark and antiquark forming the one-gluon static hybrid. The hybrid spectrum is calculated in terms of string tension and is in agreement with earlier analytic and lattice calculations. In the second setting the confined gluon is exchanged between quarks and the gluon Green's function is calculated, giving rise to the Coulomb potential modified at large distances. The resulting screening radius of 0.5 fm presents a serious problem when confronting with lattice and experimental data. A possible solution of this discrepancy is discussed.Comment: 17 pages, no figures; v2: minor numerical changes in the tabl

    The static QQˉQ\bar Q interaction at small distances and OPE violating terms

    Full text link
    Nonperturbative contribution to the one-gluon exchange produces a universal linear term in the static potential at small distances ΔV=6Ncαsσr2π\Delta V=\frac{6N_c \alpha_s \sigma r}{2\pi}. Its role in the resolution of long--standing discrepancies in the fine splitting of heavy quarkonia and improved agreement with lattice data for static potentials is discussed, as well as implications for OPE violating terms in other processes.Comment: Latex, 5 pages, to be published in JETP Let

    Glueballs, gluerings and gluestars in the d=2+1 SU(N) gauge theory

    Full text link
    The 3d gluodynamics which governs the large T quark gluon plasma is studied in the framework of the field correlator method. Field correlators and spacial string tension are derived through the gluelump Green's functions. The glueball spectrum is calculated both in C=-1 as well as in C=+1 sectors, and multigluon bound states in the form of "gluon rings" and "gluon stars" are computed explicitly. Good overall agreement with available lattice data is observed.Comment: 19 page

    Current correlators in QCD: OPE versus large distance dynamics

    Full text link
    We analyse the structure of current-current correlators in coordinate space in large NcN_c limit when the corresponding spectral density takes the form of an infinite sum over hadron poles. The latter are computed in the QCD string model with quarks at the ends, including the lowest states, for all channels. The corresponding correlators demonstrate reasonable qualitative agreement with the lattice data without any additional fits. Different issues concerning the structure of the short distance OPE are discussed.Comment: LaTeX, 25 pages, 13 figure

    Gluonic correlation length from spin-dependent potentials

    Full text link
    The vacuum gluonic correlation length is extracted from recent lattice data on spin-dependent interquark potentials in heavy quarkonia. It is shown that the data are consistent with extremely small values of the correlation length, Tg<0.1 fm.Comment: LaTeX2e, 6 pages, uses jetpl.cls (included), version to appear in JETP Let

    Baryon magnetic moments in the effective quark Lagrangian approach

    Get PDF
    An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without introduction of constituent quark masses and using only string tension as an input. Magnetic moments come out on average in reasonable agreement with experiment, except for nucleons and Σ−\Sigma^-. The predictions for the proton and neutron are shown to be in close agreement with the empirical values once we choose the string tension such to yield the proper nucleon mass. Pionic corrections to the nucleon magnetic moments have been estimated. In particular, the total result of the two-body current contributions are found to be small. Inclusion of the anomalous magnetic moment contributions from pion and kaon loops leads to an improvement of the predictions.Comment: 24 pages Revte
    • …
    corecore