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Abstract. Why do we never see a table in a superposition of here and there? This problem
gets a solution by so called collapse models assuming the collapse as a genuinely physical
process. Here we consider two specific collapse models and apply them to systems at high
energies, i.e. flavour oscillating neutral meson systems. We find on one hand a potentially
new interpretation of the decay rates introduced by hand in the standard formalism and
on the other hand that these systems at high energies constrain by experimental data the
possible collapse scenarios.

1 Introduction: The Measurement Problem

Quantum mechanics is an exceedingly successful theory which can explain a plethora of experimental
results covering physical phenomena on different energy scales. However, in its standard formulation
quantum mechanics meets some conceptual problems. For instance, formally a macroscopic object
can be in a superposition as the famous example of the Schrödinger’s cat. The interaction of a seem-
ingly macroscopic system such as a measurement apparatus with a seemingly microscopic system, a
quantum system, is postulated to force a reduction/collapse of the wave function of the quantum sys-
tem, i.e. breaking up the superposition. Standard quantum theory neither provides a mechanism how
this collapse takes place nor reveals whether it is a real physical process. We have two completely
different types of dynamics at hand, i.e.

• a deterministic unitary time evolution ruled by the Schrödinger equation and

• a stochastic and non-unitary reduction process of the wave function caused by a measurement obey-
ing Born’s rule.

Obviously, several questions arise: What defines a system to be microscopic versus macroscopic?
The Copenhagen interpretation uses this concept but never defines it. Is the collapse procedure a
real physical process? Does the collapse manifest at high energies differently than for systems at
lower energies? Do collapse models allow for a different interpretation of the measurable dynamics
of flavour oscillating mesons? In turn, how do these systems at high energies restrict the plethora of
collapse models?

Dynamical reduction models (or collapse models) claim to solve this issue by modeling the col-
lapse as a genuinely physical process. The aim of this contribution is to investigate collapse models
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for oscillation systems at high energies such as the K-mesons produced by DAΦNE. The paper is
organised by giving a short introduction to collapse models and then applying two popular models to
neutral meson systems followed by interpreting the results.

2 Collapse models: A Solution to the Measurement Problem?

Dynamical reduction models provide one of the possible solutions to the measurement problem. In
general they propose a new universal dynamics which introduces the collapse of the wave function as
an objective physical process. In order to recover the predictions of quantum mechanics this dynamics
should fulfill the following properties

• non-linearity: The new dynamics should break superpositions on a macroscopic level, particularly,
during a measurement.

• stochasticity: The new dynamics should produce the quantum probabilities obeying Born’s rule.

• no superluminal signaling: The new dynamics should not be in conflict with the special relativity.

Let us mention that it is by no means trivial that a mathematically consistent framework exists with
the above properties and simultaneously agrees with all observed data. The first dynamical reduction
model was the GRW model introduced in 1985 by Ghirardi, Rimini and Weber [1]. It proposes a
simple mechanism for the collapse for a system of N particles through spontaneous localisations, i.e.

1. Each particle undergoes a sudden localisation at a random time t (mathematically modelled by
a multiplication with a peaked Gaussian function).

2. Between such localisations the state of the system evolves due to the Schrödinger equation.

In this way the GRW model, and collapse models in general, introduce two new fundamental con-
stants, the localisation rate λGRW , which fixes the mean rate of the localisation process, and the co-
herence length rC , which fixes the width of the Gaussian function, i.e. the localisation effect. These
two constants allow to divide the world into a microscopic regime, where the Schrödinger equation
rules the dynamics mainly, and a macroscopic regime where superposition breaks (Schrödinger’s cat
is alive). Consequently, taking collapse models seriously there are two new natural constants ruling
our world.

Around 1989 two more realistic dynamical reduction models appeared on the market. These
are the QMUPL model (Quantum Mechanics with Universal Position Localisation) [2] and the CSL
model (Continuous Spontaneous Localisation) [3–5]. In contrast to the GRW model these models
introduce the spontaneous collapse as a continuous process. The dynamics is obtained by adding to
the Schrödinger equation non-linear and stochastic terms. For a given Hamiltonian Ĥ and state |ψt〉 at
time t the dynamics is defined by [6]

d|ψt〉 =
[
−iĤ dt +

√
λ

N∑
i=1

(Âi − 〈Âi〉t)dWi,t −
λ

2

N∑
i=1

(Âi − 〈Âi〉t)2dt
]
|ψt〉, (1)

where � = 1 is taken, 〈Âi〉t := 〈ψt |Âi|ψt〉 is the quantum mechanical expectation value, and λ sets the
strength of the collapse (connected to the rate and coherence length). Here Âi represent a set of N self-
adjoint commuting operators introducing the collapse, Wi,t represent a set of N independent standard
Wiener processes, one for each collapse operator Âi, and lead to a white noise field wi,t =

d
dt Wi,t which

plays a crucial role in the model. The two collapse models differ mainly in the choice of the collapse
operators Âi.
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Wiener processes, one for each collapse operator Âi, and lead to a white noise field wi,t =

d
dt Wi,t which

plays a crucial role in the model. The two collapse models differ mainly in the choice of the collapse
operators Âi.

Both models have maintained a high interest over the last years being intensively investigated
from the fundamental point of view as well as in experiments. Particularly, the QMUPL model has
been investigated by analysing the spontaneous radiation emission from a free charged particle [7, 8]
and X-ray emission by an isolated slab of Germanium [9–11]. For the CSL model experiments with
optomechanical cavities [12, 13] and mechanical oscillators [14] were proposed, contributions from
cold-atom experiments [15] were also recently obtained.

In the high energy regime the first computations for neutral meson and neutrino systems can
be found in Refs. [16, 17]. These predictions were compared to specific decoherence models [18–
20], where the decoherence strength was computed by KLOE data [21–23] and by data from B-
factories [24–26]. Last but not least it was shown that the collapse models can contribute to an
effective cosmological constant [27]. Thus the dynamical reduction models reveal a rich spectrum of
potential experimental tests.

3 Neutral Mesons: A Laboratory for Testing the Collapse Models

Flavour oscillating systems, in particular the neutral K-mesons, have proven to be an exceptional
laboratory for exploring quantum foundations, for instance a puzzling connection between the viola-
tion of the CP symmetry and the violation of a Bell inequality [28] has been found (experimentally
feasible with the KLOE detector). Neutral mesons are massive systems with two different mass eigen-
states |ML〉 and |MH〉 which decay with distinct decay rates. The difference between decay rates for
K-mesons is rather huge, in strong contrast to the other mesons. In what follows we neglect the tiny
violation of the CP symmetry (which means that 〈MH |ML〉 = 0). A neutral meson consists of quark-
antiquark pair, and both the particle state |M0〉 and the antiparticle state |M̄0〉 can decay into the same
final states. Therefore, neutral mesons have to be considered as a two-state system and their dynam-
ics is then described by the following effective Schrödinger equation due to the Wigner–Weisskopf
approximation

d
dt
|ψt〉 = −i Ĥ |ψt〉 =⇒ |ψt〉 = a(t) |M0〉 + b(t) |M̄0〉, (2)

where the effective Hamiltonian Ĥ = M̂ + i
2 Γ̂ is non-hermitian, and M̂ is the hermitian mass operator,

and Γ̂ is a hermitian operator which describes the decay. The diagonalised Hamiltonian defines the
mass eigenstates

Ĥ |Mn〉 =
(
mn +

i
2
Γn

)
|Mn〉, (3)

where ΓL, ΓH are the corresponding decay rates (with c = 1). The flavour eigenstates are related to the
mass eigenstates by

|M0〉 = 1√
2

(
|MH〉 + |ML〉

)
, (4a)

|M̄0〉 = 1√
2

(
|MH〉 − |ML〉

)
. (4b)

The general collapse scenario, Eq. (1), has been shown to be in our case equivalent to [29, 30]

i
d
dt
|ψt〉 =

[
Ĥ −

√
λ

N∑
i=1

Âiwi,t

]
|ψt〉 :=

[
Ĥ + N̂(t)

]
|ψt〉, (5)
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which has a form of a standard Schrödinger equation with a random perturbation N̂(t). Solving this
equation (5) with the help of Dyson series up to second order we obtained after a cumbersome compu-
tation the following probabilities [31, 32] for the propagation of the mass eigenstates for the QMUPL
and CSL models

PQMUPL
Mµ=L/H→Mν=L/H

(t) = δµν
(
1 − ΛQMUPL

µ · t + 3 · 1
2

(ΛQMUPL
µ )2 · t2

)
· e−Γµt, (6)

PCS L
Mµ=L/H→Mν=L/H

(t) = δµν
(
1 − ΓCS L

µ · t + 1
2

(ΓCS L
µ )2 · t2

)
· e−Γµt ≈ δµν e−(ΓCS L

µ +Γµ)t, (7)

and for the propagation of the flavour states

PQMUPL
M0→M0/M̄0 =

1
4

{∑
i=H,L

e−Γit
(
1 − ΛQMUPL

i · t + 3 · 1
2

(ΛQMUPL
i )2 · t2

)

±2 cos(∆mt) e−
ΓH+ΓL

2 t ·
1 − αλ2

∆m2

m2
0

(1 − θ(0)) +
mHmL

m2
0

(1 − 2θ(0))
 · t

+ 3 · 1
2

αλ2
∆m2

m2
0

(1 − θ(0)) +
mHmL

m2
0

(1 − 2θ(0))



2

· t2


}
, (8)

PCS L
M0→M0/M̄0 =

1
4

{∑
i=H,L

e−Γit
(
1 − ΓCS L

i · t + 1
2

(ΓCS L
i )2 · t2

)

±2 cos(∆mt) e−
ΓH+ΓL

2 t ·
1 − γ

(
√

4πrC)d

∆m2

m2
0

(1 − θ(0)) +
mHmL

m2
0

(1 − 2θ(0))
 · t

+
1
2

 γ

(
√

4πrC)d

∆m2

m2
0

(1 − θ(0)) +
mHmL

m2
0

(1 − 2θ(0))



2

· t2


}

≈ e−(ΓL+Γ
CS L
L )t + e−(ΓH+Γ

CS L
H )t

4
·
{

1 ± cos(∆mt)

cosh( (ΓL+Γ
CS L
L )−(ΓH+Γ

CS L
H )

2 · t)
· e
− γ

(
√

4πrC )d
(∆m)2

2 m2
0

t
}
,(9)

where we used the abbreviations

ΛQMUPL
µ =

αλ

2
·

m2
µ

m2
0

·
(
1 − 2θ(0)

)
(10)

and

ΓCS L
µ =

γ

(
√

4πrC)d
·

m2
µ

m2
0

·
(
1 − 2θ(0)

)
. (11)

Here d is the dimensionality, λ = λGRW

2r2
C

is the collapse strength in the QMUPL model, γ = λGRW ·
(
√

4πrC)d is the collapse strength in the CSL model, m0 is a reference mass which is taken usually to
be the nucleon mass (we will use the rest mass of the corresponding neutral meson), ∆m = mH − mL

is the mass difference, θ(0) is the Heaviside function at zero, and
√
α represents a width of the wave

packet that is assumed to be the initial state of the meson for the QMUPL model.
The obtained probabilities reveal several interesting results, namely:

• For the QMUPL model the probabilities have a non-exponential contribution which makes the col-
lapse effect in principle observable.
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Γ
exp
L [s−1] Γ

exp
H [s−1] ∆mexp [�s−1] mL [�s−1] mH [�s−1]

K-mesons 1.117 · 1010 1.955 · 107 0.529 · 1010 2.311 · 108 5.524 · 109

D-mesons 2.454 · 1012 2.423 · 1012 0.950 · 1010 1.468 · 1012 1.477 · 1012

Bd-mesons 6.582 · 1011 6.576 · 1011 0.510 · 1012 1.020 · 1015 1.020 · 1015

Bs-mesons 7.072 · 1011 6.158 · 1011 1.776 · 1013 2.477 · 1014 2.655 · 1014

Table 1. Experimental values of the decay rates, the mass difference and the computed values of the absolute
masses for K-, D-, Bd- and Bs-mesons. The table is taken from [32].

• For the CSL model the probabilities can be expanded to exponentials, allowing for new interpreta-
tions.

• The collapse dynamics contributes to the transition probabilities by two independent effects, a
damping of the oscillation and a contribution to the decay rates.

• While the damping of the oscillation is proportional to the experimentally measurable squared mass
difference, the effective decay constants are proportional to the squared absolute masses (which do
not show up in the standard quantum mechanical framework as measurable quantities).

In general, the obtained probabilities are strongly sensitive to the very nature of the noise field
which results in the freedom to choose the value of the Heaviside function at zero θ(0) ∈ [0, 1].
Furthermore, a fully new interpretation of the dynamics can be obtained [32]. The decay rates can be
fully derived as an effect of the collapse. Note that in any standard framework handling the meson
dynamics only the mass difference mH −mL appears, never the absolute masses. This can be achieved
by reversing the mass ratio mµ

m0
in the decay constants ΓCS L

µ (which is more reasonable from a collapse
model perspective) and taking θ(0) ∈ [0, 1/2} to save their positivity. Considering such a scenario
allows to calculate the absolute masses of the mesons using the decay rates and mass difference
measured in experiments via

ΓCS L
L − ΓCS L

H

ΓCS L
L + ΓCS L

H

=
m2

H − m2
L

m2
H + m2

L

= 1 −
m2

L

m2
L + mL∆m + 1

2 (∆m)2
, (12)

and the obtained absolute masses of some neutral mesons are listed in the Table 1. Thus the decay
rates are functions of the absolute masses and do not need an additional introduction as in the standard
approach by making the Hamiltonian non-hermitian or treating the decay as a decoherence effect [35,
36].

From the perspective of collapse models neutral mesons allow us to derive the CSL collapse rate
in return

λCS L := Γ
exp
µ ·

m2
µ

m2
0

1
1 − 2θ(0)

=
1

(
√
Γ−1

L −
√
Γ−1

H )2

(∆m)2

m2
0

1
1 − 2θ(0)

. (13)

The predicted values of the collapse rate are plotted in Fig. 1 for the different types of mesons and can
be compared in Fig. 2 with the experimental data of different physical systems (summarised recently
in Ref. [33]).

The plots show that the values for all the mesons except for K-mesons are of the order of the
collapse rate assumed by Adler, λCS L

Adler = 10−(8±2)s−1 [34]. K-mesons tend to be closer to the original
value of the collapse rate proposed by Ghirardi, Rimini and Weber, λCS L

GRW = 10−16s−1 [1], but require
a value of θ(0) close to 1

2 .
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Figure 1. Values of the collapse rate including exper-
imental errors as a function of θ(0) based on the val-
ues Γexp

H , Γ
exp
L ,∆mexp known from experiments for the

different types of neutral mesons. The plot is taken
from [32].

Figure 2. Bounds on the natural constants of the CSL
model based on LIGO, LISA Pathfinder and AURIGA
experiments (blue, green, and red lines), ultracold can-
tilever experiments (purple line), X-ray experiments
(light blue line) and theoretical estimations (grey line)
(taken from Ref. [33]). The thick dashed lines refer
to the lower bounds due to our computations of λCS L,
Eq. (13), for the neutral meson system. Note that rC is
not bounded.

4 Conclusions

Dynamical reduction models provide a possible solution to the measurement problem of standard
quantum mechanics by introducing a physical mechanism of the collapse of the wave function. We
have investigated two popular collapse models and derived their respective deviations from the stan-
dard dynamics of flavour oscillations which are intensively studied at accelerator facilities. We have
found that in principle such changes are observable and the dynamics can change the oscillation be-
haviour and under certain constraints explain the decay behaviour of neutral mesons completely. We
have also illustrated how the meson system restricts the plethora of collapse models considerably.

Precision data from experiments such as KLOE will allow further to restrict or even rule out
certain collapse scenarios when one extents the dynamics to two entangled pairs of mesons or/and
includes CP violation.

Acknowledgements: Both authors acknowledge gratefully the Austrian Science Fund (FWF-
P26783).
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Figure 1. Values of the collapse rate including exper-
imental errors as a function of θ(0) based on the val-
ues Γexp

H , Γ
exp
L ,∆mexp known from experiments for the

different types of neutral mesons. The plot is taken
from [32].

Figure 2. Bounds on the natural constants of the CSL
model based on LIGO, LISA Pathfinder and AURIGA
experiments (blue, green, and red lines), ultracold can-
tilever experiments (purple line), X-ray experiments
(light blue line) and theoretical estimations (grey line)
(taken from Ref. [33]). The thick dashed lines refer
to the lower bounds due to our computations of λCS L,
Eq. (13), for the neutral meson system. Note that rC is
not bounded.

4 Conclusions

Dynamical reduction models provide a possible solution to the measurement problem of standard
quantum mechanics by introducing a physical mechanism of the collapse of the wave function. We
have investigated two popular collapse models and derived their respective deviations from the stan-
dard dynamics of flavour oscillations which are intensively studied at accelerator facilities. We have
found that in principle such changes are observable and the dynamics can change the oscillation be-
haviour and under certain constraints explain the decay behaviour of neutral mesons completely. We
have also illustrated how the meson system restricts the plethora of collapse models considerably.

Precision data from experiments such as KLOE will allow further to restrict or even rule out
certain collapse scenarios when one extents the dynamics to two entangled pairs of mesons or/and
includes CP violation.
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