24 research outputs found
'It's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions
Data-driven decision-making consequential to individuals raises important
questions of accountability and justice. Indeed, European law provides
individuals limited rights to 'meaningful information about the logic' behind
significant, autonomous decisions such as loan approvals, insurance quotes, and
CV filtering. We undertake three experimental studies examining people's
perceptions of justice in algorithmic decision-making under different scenarios
and explanation styles. Dimensions of justice previously observed in response
to human decision-making appear similarly engaged in response to algorithmic
decisions. Qualitative analysis identified several concerns and heuristics
involved in justice perceptions including arbitrariness, generalisation, and
(in)dignity. Quantitative analysis indicates that explanation styles primarily
matter to justice perceptions only when subjects are exposed to multiple
different styles---under repeated exposure of one style, scenario effects
obscure any explanation effects. Our results suggests there may be no 'best'
approach to explaining algorithmic decisions, and that reflection on their
automated nature both implicates and mitigates justice dimensions.Comment: 14 pages, 3 figures, ACM Conference on Human Factors in Computing
Systems (CHI'18), April 21--26, Montreal, Canad
Machine Learning Education for Artists, Musicians, and Other Creative Practitioners
This article aims to lay a foundation for the research and practice of machine learning education for creative practitioners. It begins by arguing that it is important to teach machine learning to creative practitioners and to conduct research about this teaching, drawing on related work in creative machine learning, creative computing education, and machine learning education. It then draws on research about design processes in engineering and creative practice to motivate a set of learning objectives for students who wish to design new creative artifacts with machine learning. The article then draws on education research and knowledge of creative computing practices to propose a set of teaching strategies that can be used to support creative computing students in achieving these objectives. Explanations of these strategies are accompanied by concrete descriptions of how they have been employed to develop new lectures and activities, and to design new experiential learning and scaffolding technologies, for teaching some of the first courses in the world focused on teaching machine learning to creative practitioners. The article subsequently draws on data collected from these courses—an online course as well as undergraduate and masters-level courses taught at a university—to begin to understand how this curriculum supported student learning, to understand learners’ challenges and mistakes, and to inform future teaching and research