14,721 research outputs found

    A noise trader model as a generator of apparent financial power laws and long memory

    Get PDF
    In various agent-based models the stylized facts of financial markets (unit-roots, fat tails and volatility clustering) have been shown to emerge from the interactions of agents. However, the complexity of these models often limits their analytical accessibility. In this paper we show that even a very simple model of a financial market with heterogeneous interacting agents is capable of reproducing these ubiquitous statistical properties. The simplicity of our approach permits to derive some analytical insights using concepts from statistical mechanics. In our model, traders are divided into two groups: fundamentalists and chartists, and their interactions are based on a variant of the herding mechanism introduced by Kirman [1993]. The statistical analysis of simulated data points toward long-term dependence in the auto-correlations of squared and absolute returns and hyperbolic decay in the tail of the distribution of raw returns, both with estimated decay parameters in the same range like those of empirical data. Theoretical analysis, however, excludes the possibility of ‘true’ scaling behavior because of the Markovian nature of the underlying process and the boundedness of returns. The model, therefore, only mimics power law behavior. Similarly as with the phenomenological volatility models analyzed in LeBaron [2001], the usual statistical tests are not able to distinguish between true or pseudo-scaling laws in the dynamics of our artificial market --Herd Behavior,Speculative Dynamics,Fat Tails,Volatility Clustering

    A minimal noise trader model with realistic time series properties

    Get PDF
    Simulations of agent-based models have shown that the stylized facts (unit-root, fat tails and volatility clustering) of financial markets have a possible explanation in the interactions among agents. However, the complexity, originating from the presence of non-linearity and interactions, often limits the analytical approach to the dynamics of these models. In this paper we show that even a very simple model of a financial market with heterogeneous interacting agents is capable of reproducing realistic statistical properties of returns, in close quantitative accordance with the empirical analysis. The simplicity of the system also permits some analytical insights using concepts from statistical mechanics and physics. In our model, the traders are divided into two groups : fundamentalists and chartists, and their interactions are based on a variant of the herding mechanism introduced by Kirman [22]. The statistical analysis of our simulated data shows long-term dependence in the auto-correlations of squared and absolute returns and hyperbolic decay in the tail of the distribution of the raw returns, both with estimated decay parameters in the same range like empirical data. Theoretical analysis, however, excludes the possibility of ?true? scaling behavior because of the Markovian nature of the underlying process and the finite set of possible realized returns. The model, therefore, only mimics power law behavior. Similarly as with the phenomenological volatility models analyzed in LeBaron [25], the usual statistical tests are not able to distinguish between true or pseudo-scaling laws in the dynamics of our artificial market. --Herd Behavior , Speculative Dynamics , Fat Tails , Volatility Clustering

    Extreme Value Theory as a Theoretical Background for Power Law Behavior

    Get PDF
    Power law behavior has been recognized to be a pervasive feature of many phenomena in natural and social sciences. While immense research efforts have been devoted to the analysis of behavioral mechanisms responsible for the ubiquity of power-law scaling, the strong theoretical foundation of power laws as a very general type of limiting behavior of large realizations of stochastic processes is less well known. In this chapter, we briefly present some of the key results of extreme value theory, which provide a statistical justification for the emergence of power laws as limiting behavior for extreme fluctuations. The remarkable generality of the theory allows to abstract from the details of the system under investigation, and therefore allows its application in many diverse fields. Moreover, this theory offers new powerful techniques for the estimation of the Pareto index, detailed in the second part of this chapter.Extreme Value Theory; Power Laws; Tail index

    Excitons in van der Waals heterostructures: The important role of dielectric screening

    Get PDF
    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semi-conductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions (2D), a systematic investigation of the role of screening on 2D excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model which assumes a dielectric function of the form {\epsilon}(q) = 1 + 2{\pi}{\alpha}q, and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges with a finite extension in the perpendicular direction and their interaction is screened by a dielectric function with a non-linear q-dependence which is computed ab-initio. The screened interaction is used in a generalized Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model and both are in good agreement with ab-initio many-body calculations. On the other hand, for more complex structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton in reciprocal space extends well beyond the linear regime of the dielectric function and a quasi-2D description has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D materials or van der Waals heterostructures.Comment: 14 pages, 13 figure

    Time-variation of higher moments in a financial market with heterogeneous agents: An analytical approach

    Get PDF
    A growing body of recent literature allows for heterogenous trading strategies and limited rationality of agents in behavioral models of financial markets. More and more, this literature has been concerned with the explanation of some of the stylized facts of financial markets. It now seems that some previously mysterious time-series characteristics like fat tails of returns and temporal dependence of volatility can be observed in many of these models as macroscopic patterns resulting from the interaction among different groups of speculative traders. However, most of the available evidence stems from simulation studies of relatively complicated models which do not allow for analytical solutions. In this paper, this line of research is supplemented by analytical solutions of a simple variant of the seminal herding model introduced by Kirman [1993]. Embedding the herding framework into a simple equilibrium asset pricing model, we are able to derive closed-form solutions for the time-variation of higher moments as well as related quantities of interest enabling us to spell out under what circumstances the model gives rise to realistic behavior of the resulting time series --

    The absolute continuity of the integrated density of states for magnetic Schr\"odinger operators with certain unbounded random potentials

    Full text link
    The object of the present study is the integrated density of states of a quantum particle in multi-dimensional Euclidean space which is characterized by a Schr{\"o}dinger operator with magnetic field and a random potential which may be unbounded from above and below. In case that the magnetic field is constant and the random potential is ergodic and admits a so-called one-parameter decomposition, we prove the absolute continuity of the integrated density of states and provide explicit upper bounds on its derivative, the density of states. This local Lipschitz continuity of the integrated density of states is derived by establishing a Wegner estimate for finite-volume Schr\"odinger operators which holds for rather general magnetic fields and different boundary conditions. Examples of random potentials to which the results apply are certain alloy-type and Gaussian random potentials. Besides we show a diamagnetic inequality for Schr\"odinger operators with Neumann boundary conditions.Comment: This paper will appear in "Communications in Mathematical Physics". It is a revised version of the second part of the first version of math-ph/0010013, which in its second version only contains the (revised) first par

    Excess Volatility and Herding in an Artificial Financial Market: Analytical Approach and Estimation

    Get PDF
    Several agent-based models have been proposed in the economic literature to explain the key stylized facts of financial data: heteroscedasticity, fat tails of returns and long-range dependence of volatility. Agentbased models view these empirical regularities as emerging properties of interacting groups of boundedly rational agents in financial markets. The complexity of these interacting agent models has largely constrained their analytical treatment, limiting their analysis mainly to Monte Carlo simulations. In order to overcome this limitation, we introduce a ‘minimalist’ model of an artificial financial market, along the lines of our previous contributions, based on herding behavior among two types of traders. The simplicity of the model allows for an almost complete analytical characterization of both conditional and unconditional statistical properties of prices and returns. Moreover, the underlying parameters of the model can be estimated directly, which permits an assessment of its goodness-of-fit for empirical data. While the performance of the model for domestic stock markets has been the focus of a previous contribution, in this paper we report results for selected exchange rates against the US dollar.Herd Behavior; Speculative Dynamics; Fat Tails; Volatility Clustering.
    corecore