37 research outputs found

    Creation and counting of defects in a temperature quenched Bose-Einstein Condensate

    Full text link
    We study the spontaneous formation of defects in the order parameter of a trapped ultracold bosonic gas while crossing the critical temperature for Bose-Einstein Condensation (BEC) at different rates. The system has the shape of an elongated ellipsoid, whose transverse width can be varied to explore dimensionality effects. For slow enough temperature quenches we find a power-law scaling of the average defect number with the quench rate, as predicted by the Kibble-Zurek mechanism. A breakdown of such a scaling is found for fast quenches, leading to a saturation of the average defect number. We suggest an explanation for this saturation in terms of the mutual interactions among defects.Comment: 9 pages, 10 figure

    Observation of Solitonic Vortices in Bose-Einstein Condensates

    Full text link
    We observe solitonic vortices in an atomic Bose-Einstein condensate after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation. Experimental observations agree with numerical simulations. These solitonic vortices are the decay product of phase defects of the BEC order parameter spontaneously created after a rapid quench across the BEC transition in a cigar-shaped harmonic trap and are shown to have a very long lifetime.Comment: 7 pages, 7 figure

    Solitonic Vortices in Bose-Einstein Condensates

    Full text link
    We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.Comment: 6 pages, 4 figure

    Dynamics and interaction of vortex lines in an elongated Bose-Einstein condensate

    Full text link
    We study the real-time dynamics of vortex lines in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are spontaneously produced via the Kibble-Zurek mechanism in a quench across the BEC transition and then they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortex lines, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.Comment: 4 pages, 4 figure

    Probing multipulse laser ablation by means of self-mixing interferometry

    Full text link
    In this work, self-mixing interferometry (SMI) is implemented inline to a laser microdrilling system to monitor the machining process by probing the ablation-induced plume. An analytical model based on the Sedov-Taylor blast wave equation is developed for the expansion of the process plume under multiple-pulse laser percussion drilling conditions. Signals were acquired during laser microdrilling of blind holes on stainless steel, copper alloy, pure titanium, and titanium nitride ceramic coating. The maximum optical path difference was measured from the signals to estimate the refractive index changes. An amplitude coefficient was derived by fitting the analytical model to the measured optical path differences. The morphology of the drilled holes was investigated in terms of maximum hole depth and dross height. The results indicate that the SMI signal rises when the ablation process is dominated by vaporization, changing the refractive index of the processing zone significantly. Such ablation conditions correspond to limited formation of dross. The results imply that SMI can be used as a nonintrusive tool in laser micromachining applications for monitoring the process quality in an indirect way

    Interplay between powder catchment efficiency and layer height in self-stabilized laser metal deposition

    Full text link
    In laser metal deposition (LMD) the height of the deposited track can vary within and between layers, causing significant deviations during the process evolution. Previous works have shown that in certain conditions a self-stabilizing mechanism occurs, maintaining a regular height growth and a constant standoff distance between the part and the deposition nozzle. Here we analyze the link between the powder catchment efficiency and the deposition height stability. To this purpose, a monitoring system was developed to study the deposition in different process conditions, using inline measurements of the specimen weight in combination with the layer height information obtained with coaxial optical triangulation. An analytical model was used to estimate the deposition efficiency in real-time from the height monitoring and the process parameters, which was verified by the direct mass measurements. The results show that the track height stabilization is associated to a reduction of the powder catchment efficiency, which is governed by the melt pool relative position with respect to the powder cone and the laser beam. For a given set of parameters, the standoff distance can be estimated to achieve the highest powder catchment efficiency and a regular height through the build direction

    Phase Noise in Real-World Twin-Field Quantum Key Distribution

    Full text link
    We investigate the impact of noise sources in real-world implementations of Twin-Field Quantum Key Distribution (TF-QKD) protocols, focusing on phase noise from photon sources and connecting fibers. Our work emphasizes the role of laser quality, network topology, fiber length, arm balance, and detector performance in determining key rates. Remarkably, it reveals that the leading TF-QKD protocols are similarly affected by phase noise despite different mechanisms. Our study demonstrates duty cycle improvements of over 2x through narrow-linewidth lasers and phase-control techniques, highlighting the potential synergy with high-precision time/frequency distribution services. Ultrastable lasers, evolving toward integration and miniaturization, offer promise for agile TF-QKD implementations on existing networks. Properly addressing phase noise and practical constraints allows for consistent key rate predictions, protocol selection, and layout design, crucial for establishing secure long-haul links for the Quantum Communication Infrastructures under development in several countries.Comment: 18 pages, 8 figures, 2 table

    Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Full text link
    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure

    Coherent phase transfer for real-world twin-field quantum key distribution

    Get PDF
    Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications
    corecore