1,916 research outputs found

    Impaired self awareness after traumatic brain injury: inter-rater reliability and factor structure of the dysexecutive questionnairre (DEX) in patients, significant others and clinicians

    Get PDF
    Aims: This study sought to address two questions: (1) what is the inter-rater reliability of the Dysexecutive Questionnaire (DEX) when completed by patients, their significant others, and clinicians; and (2) does the factor structure of the DEX vary for these three groups? Methods: We obtained DEX ratings for 113 patients with an acquired brain injury from two brain injury services in the UK and two services in Ireland. We gathered data from two groups of raters—”significant others” (DEX-SO) such as partners and close family members and “clinicians” (DEX-C), who were psychologists or rehabilitation physicians working closely with the patient and who were able to provide an opinion about the patient’s level of everyday executive functioning. Intra-class correlation coefficients and their 95% confidence intervals were calculated between each of the three groups (self, significant other, clinician). Principal axis factor (PAF) analyses were also conducted for each of the three groups. Results: The factor analysis revealed a consistent one-factor model for each of the three groups of raters. However, the inter-rater reliability analyses showed a low level of agreement between the self-ratings and the ratings of the two groups of independent raters. We also found low agreement between the significant others and the clinicians. Conclusion: Although there was a consistent finding of a single factor solution for each of the three groups, the low level of agreement between significant others and clinicians raises a question about the reliability of the DEX.</p

    Impaired self awareness after traumatic brain injury: inter-rater reliability and factor structure of the dysexecutive questionnairre (DEX) in patients, significant others and clinicians

    Get PDF
    Aims: This study sought to address two questions: (1) what is the inter-rater reliability of the Dysexecutive Questionnaire (DEX) when completed by patients, their significant others, and clinicians; and (2) does the factor structure of the DEX vary for these three groups? Methods: We obtained DEX ratings for 113 patients with an acquired brain injury from two brain injury services in the UK and two services in Ireland. We gathered data from two groups of raters—”significant others” (DEX-SO) such as partners and close family members and “clinicians” (DEX-C), who were psychologists or rehabilitation physicians working closely with the patient and who were able to provide an opinion about the patient’s level of everyday executive functioning. Intra-class correlation coefficients and their 95% confidence intervals were calculated between each of the three groups (self, significant other, clinician). Principal axis factor (PAF) analyses were also conducted for each of the three groups. Results: The factor analysis revealed a consistent one-factor model for each of the three groups of raters. However, the inter-rater reliability analyses showed a low level of agreement between the self-ratings and the ratings of the two groups of independent raters. We also found low agreement between the significant others and the clinicians. Conclusion: Although there was a consistent finding of a single factor solution for each of the three groups, the low level of agreement between significant others and clinicians raises a question about the reliability of the DEX.</p

    Overview of the 2023 ICASSP SP Clarity Challenge: Speech Enhancement for Hearing Aids

    Get PDF
    This paper reports on the design and outcomes of the ICASSP SP Clarity Challenge: Speech Enhancement for Hearing Aids. The scenario was a listener attending to a target speaker in a noisy, domestic environment. There were multiple interferers and head rotation by the listener. The challenge extended the second Clarity Enhancement Challenge (CEC2) by fixing the amplification stage of the hearing aid; evaluating with a combined metric for speech intelligibility and quality; and providing two evaluation sets, one based on simulation and the other on real-room measurements. Five teams improved on the baseline system for the simulated evaluation set, but the performance on the measured evaluation set was much poorer. Investigations are on-going to determine the exact cause of the mismatch between the simulated and measured data sets. The presence of transducer noise in the measurements, lower order Ambisonics harming the ability for systems to exploit binaural cues and the differences between real and simulated room impulse responses are suggested causes

    The 2nd Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction

    Get PDF
    This paper reports on the design and outcomes of the 2nd Clarity Prediction Challenge (CPC2) for predicting the intelligibility of hearing aid processed signals heard by individuals with a hearing impairment. The challenge was designed to promote new approaches for estimating the intelligibility of hearing aid signals that can be used in future hearing aid algorithm development. It extends an earlier round (CPC1, 2022) in a number of critical directions, including a larger dataset coming from new speech intelligibility listening experiments, a greater degree of variability in the test materials, and a design that requires prediction systems to generalise to unseen algorithms and listeners. This paper provides a full description of the new publicly available CPC2 dataset, the CPC2 challenge design, and the baseline systems. The challenge attracted 12 systems from 9 research teams. The systems are reviewed, their performance is analysed and conclusions are presented, with reference to the progress made since the earlier CPC1 challenge. In particular, it is seen how reference-free, non-intrusive systems based on pre-trained large acoustic models can perform well in this context

    Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.

    Get PDF
    Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.All authors were supported by EU FP7 grant DDPDGENES. S.L. was supported by European Research Council grant 261063 (BRAINCELL), Knut and Alice Wallenberg Foundation grant 2015.0041, Swedish Research Council (STARGET), and the Swedish Foundation for Strategic Research (RIF14-0057). A.Z. was supported by the Human Frontier Science Program. E.A. was supported by Swedish Research Council (VR projects: 2011-3116 and 2011-3318), Swedish Foundation for Strategic Research (SRL program), and Karolinska Institutet (SFO Thematic Center in Stem cells and Regenerative Medicine). E.A. and R.A.B. were supported by the EU FP7 grant NeuroStemcellRepair. R.A.B. was also supported by an NIHR Biomedical Research Centre award to the University of Cambridge/Addenbrookes Hospital. iCell dopaminergic neurons were a generous gift from Cellular Dynamics International. Single-cell RNA-seq servic0es were provided by the Eukaryotic Single-cell Genomics facility and the National Genomics Infrastructure at Science for Life Laboratory.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cell.2016.09.02

    DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport.

    Get PDF
    The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature

    Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Full text link
    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
    • 

    corecore