8,130 research outputs found

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page

    Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training

    Get PDF
    We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel implementations and we prove global convergence under suitable conditions. Focusing on support vector machines training, we outline how these assumptions can be satisfied in practice and we suggest various specific implementations. Extensions of the theoretical results to general linearly constrained problem are provided. We included numerical results on support vector machines with the aim of showing the viability and the effectiveness of the proposed scheme

    Graph-theoretical Bounds on the Entangled Value of Non-local Games

    Get PDF
    We introduce a novel technique to give bounds to the entangled value of non-local games. The technique is based on a class of graphs used by Cabello, Severini and Winter in 2010. The upper bound uses the famous Lov\'asz theta number and is efficiently computable; the lower one is based on the quantum independence number, which is a quantity used in the study of entanglement-assisted channel capacities and graph homomorphism games.Comment: 10 pages, submission to the 9th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2014

    Spherical clustering of users navigating 360{\deg} content

    Full text link
    In Virtual Reality (VR) applications, understanding how users explore the omnidirectional content is important to optimize content creation, to develop user-centric services, or even to detect disorders in medical applications. Clustering users based on their common navigation patterns is a first direction to understand users behaviour. However, classical clustering techniques fail in identifying these common paths, since they are usually focused on minimizing a simple distance metric. In this paper, we argue that minimizing the distance metric does not necessarily guarantee to identify users that experience similar navigation path in the VR domain. Therefore, we propose a graph-based method to identify clusters of users who are attending the same portion of the spherical content over time. The proposed solution takes into account the spherical geometry of the content and aims at clustering users based on the actual overlap of displayed content among users. Our method is tested on real VR user navigation patterns. Results show that our solution leads to clusters in which at least 85% of the content displayed by one user is shared among the other users belonging to the same cluster.Comment: 5 pages, conference (Published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • …
    corecore